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Course Description: 
The Forecasting Solar Radiation and Photovoltaic Power 
course satisfies five (5) hours of professional development.  
The course is designed as a distance learning course that 
overviews the basic concepts of solar irradiance and 
Photovoltaic (PV) power forecasting. Course based on Best 
Practices Handbook for the Collection and Use of Solar 
Resource Data for Solar Energy Applications, 3rd edition, 
NREL, 2021. 

 
Objectives: 

The primary objective of this course is to enable the student 
to understand solar irradiance forecasting and to understand 
the basic concepts and various methods of solar irradiance 
forecasting as well as forecasting the power production of 
Photovoltaic (PV) power plants.  
 

 
Grading:  

Students must achieve a minimum score of 70% on the 
online quiz to pass this course. The quiz may be taken as 
many times as necessary to successfully pass and complete 
the course.  
A copy of the quiz questions is attached to the last pages of 
this document. 
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Forecasting Solar Radiation and Photovoltaic Power 

1 Introduction 
Solar resource forecasting is critical for the operation and management of solar power plants and 
electric grids. Solar radiation is highly variable because it is driven mainly by synoptic and local 
weather patterns. This high variability presents challenges to meeting power production and 
demand curves, notably in the case of solar photovoltaic (PV) power plants, which have little or 
no storage capacity. For concentrating solar power (CSP) plants, variability issues are partially 
mitigated by the thermal inertia of the plant, including its heat transfer fluid, heat exchangers, 
turbines, and potentially coupling with a heat storage facility; however, temporally and spatially 
varying irradiance introduces thermal stress in critical system components and plant management 
issues that can result in the degradation of the overall system’s performance and reduction of the 
plant’s lifetime. The variability can also result in lower plant efficiencies than those that occur 
under operation in stable conditions because optimally operating the plant under variable 
conditions is significantly more challenging. For PV power plants that have battery storage, 
forecasts are helpful for scheduling the charging process of the batteries at the most appropriate 
time, optimizing the fractions of electricity delivered and stored at any instant, and thus avoiding 
the loss of usable energy. 

Solar radiation forecasting anticipates the solar radiation transients and the power production of 
solar energy systems, allowing for the setup of contingency mechanisms to mitigate any 
deviation from the required production.  

With the expected integration of increasing shares of solar power into the electric grid, reliable 
predictions of solar power production are becoming increasingly important. PV power represents 
one of the main shares of the total renewable energy, along with wind power generation (IRENA 
2019). High penetrations of PV power generation pose several challenges for the stability of the 
electric grid because of the stochastic variability of the residual electric load (i.e., the difference 
between the energy need—or load—and the distributed PV power generation, depending on 
meteorological conditions and sun position); therefore, accurate forecasting of PV power 
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generation is required for energy scheduling and for balancing demand and supply. This 
information is essential for distribution system operators and transmission system operators 
(TSOs) as well as for aggregators and energy traders (Pierro et al. 2017).  

Today, PV power prediction systems are an essential part of electric grid management in 
countries that have substantial shares of solar power generation, among which Germany is 
a paradigmatic case. For example, in 2020, Germany had an installed PV power capacity of more 
than 50 GWpeak, supplying more than 50% of the total load on sunny summer days at noon. In 
this context, and according to the German Renewable Energy Sources Act, TSOs are in charge of 
marketing and balancing the overall fluctuating PV power feed-in, which requires the use of 
regional forecasts for the designated control areas. Additionally, optional direct marketing of PV 
power is based on forecasts for the PV power plant’s output. PV power is first offered on the 
day-ahead auction at the European Power Exchange. Subsequently, amendments based on 
updated forecasts can be made on the intraday market, when electricity can be traded until 30 
minutes before delivery begins. Remaining deviations between scheduled and needed power are 
adjusted using balancing power. A similar procedure for California’s electricity market was 
described by Mathiesen, Kleissl, and Collier (2013). Also, Kleissl (2013) described the 
stakeholder needs from the perspective of independent system operators and energy traders. 
Hence, accurate PV power forecasts at different spatial and temporal scales are extremely 
important for cost-efficient grid integration because large errors in the day-ahead forecast can 
cause either very high or negative prices on the intraday market, and intraday forecast errors 
determine the need for costly balancing power. 

Several studies have evaluated the added value of solar irradiance forecasting for solar energy 
applications. For example, Dumortier (2009) gave a preliminary overview of such applications. 
Many other authors have detailed specific use cases and benefits of solar power forecasting. The 
following is a nonexhaustive list: 

• In the realm of electric grids, Perez et al. (2007) evaluated the operational accuracy of
end-use forecasts and their ability to predict the effective capacity of grid-connected PV
power plants.

• Kaur et al. (2016) described the benefits of solar forecasting for energy imbalance
markets.

• The specific needs of solar forecasting for the real-time electricity market and forecasting
requirements from the California Independent System Operator have been examined by
Yang, Wu, and Kleissl (2019), showing that hourly forecasts could be appropriately
downscaled to the contemplated 15-minute resolution.

• Rikos et al. (2008), Diagné et al. (2013), and Simoglou et al. (2014) examined the solar
power forecasting requirements to support microgrid and island systems with respect to
stability and power quality. More specifically, Martinez-Anido et al. (2016) evaluated the
value of solar forecast improvements for the Independent System Operator – New
England.
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• At the power plant level, Marcos et al. (2013) described the benefits of power prediction
to optimize a storage system that attenuates power fluctuations in large PV power plants.

• Almeida, Perpiñán, and Narvarte (2015) explored the skill of a nonparametric method to
predict the AC power output of PV power plants.

• Wittmann et al. (2008) and Kraas, Schroedter-Homscheidt, and Madlener et al. (2013)
used case studies to show the economic benefit of supplying direct normal irradiance
(DNI) forecasts for the optimized operation strategies of CSP plants.

• Schroedter-Homscheidt et al. (2013) evaluated the aerosol forecasting requirements for
forecasts of concentrating solar electricity production.

• Law et al. (2014) reviewed different DNI forecasting methods and their applications to
yield forecasting of CSP plants. In a later publication, Law, Kay, and Taylor (2016)
reviewed the benefits of short-term DNI forecasts for the CSP technology.

• Hirsch et al. (2014) specifically evaluated the use of 6-hour forecasts (nowcasting) to
operate CSP plants.

In a broader context, different solar radiation forecasting approaches, targeted at various time 
horizons, have been developed using different input data and data processing methods. In the 
IEA PVPS context, the state of the art of solar forecasting has been addressed in a report for 
Task 14 (Pelland et al. 2013). A nonexhaustive list includes methods based on: 

• Statistical inference on ground-observed time-series (Huang et al. 2013; Lonij et al. 2013;
Voyant et al. 2014; Boland and Soubdhan 2015; Graditi, Ferlito, and Adinolfi 2016)

• Use of cloud motion vectors (CMVs) and other cloud advection techniques on data from
all-sky cameras and satellite imagery (Hammer et al. 1999; Perez et al. 2010; Chow et al.
2011; Marquez and Coimbra 2013; Quesada-Ruiz et al. 2014; Schmidt et al. 2016; Lee et
al. 2017; Arbizu-Barrena et al. 2017; Miller et al. 2018)

• Forecasts based on numerical weather prediction (NWP) models (Mathiesen and Kleissl
2011; Lara-Fanego et al. 2012; Pelland, Galanis, and Kallos 2013; Ohtake et al. 2013;
Perez et al. 2013; Jimenez et al. 2016a; Jimenez et al. 2016b) or even hybrid techniques
(Marquez and Coimbra 2011; Marquez, Pedro, and Coimbra 2013; Perez et al. 2014;
Dambreville et al. 2014; Wolff et al. 2016; Mazorra Aguiar et al. 2016).

This course provides an overview of basic concepts of solar irradiance forecasting by referring to 
selected examples and operational models rather than reviewing the state of the art because such 
reviews can be found elsewhere, including in Lorenz and Heinemann (2012); Inman, Pedro, and 
Coimbra (2013); Kleissl, Schroedter-Homscheidt, and Madlener (2013), and, for PV 
applications, in Antonanzas et al. (2016). The evaluations and comparisons of different 
irradiance forecasting approaches focus on global horizontal irradiance (GHI), with DNI being 
discussed in less detail. Nevertheless, forecasting and, in particular, evaluation methods apply to 
DNI to some extent. A focus on DNI forecasting can be found in Schroedter-Homscheidt and 
Wilbert (2017). The selected examples presented below have been investigated in the context of 
the International Energy Agency (IEA) Solar Heating and Cooling Programme (SHC) Task 36 
and Task 46, and Photovoltaic Power Systems Programme (PVPS) Task 16. 

Irradiance is a key driver for solar power output, but other environmental factors—including 
ambient temperature, air humidity, wind speed, and wind direction—have a nonnegligible impact 
on the final power yield of the plant. Ambient temperature, for instance, affects the PV efficiency 
and the thermal regime of CST plants. Humidity might also have some impact on CSP systems. 
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Similarly, wind speed and especially wind gust prediction are important for preventing strong 
mechanical loads in tracking systems; therefore, the forecasting of such other ancillary factors 
will provide tangible benefits for the effective operation of power plants. Forecasts of these 
ancillary variables, however, are not discussed here. 

1.1 Overview of Solar Irradiance Forecasting Methods  
Depending on the specific application and requirements regarding forecast horizon and 
spatiotemporal resolution, different forecasting methods are customarily used. From short to long 
forecasting horizons, the most important solar forecasting methods are the following: 

• Intrahour forecasts with high spatial and temporal resolution: These require on-site
observations of irradiance and/or cloud conditions that are processed using statistical
methods and, more recently, artificial intelligence and machine learning models, such as
neural networks, as discussed in Section 3. Those that are based on solar irradiance
measurements and, for instance, conventional autoregressive techniques might provide
meaningful forecasts even up to a few hours ahead under relatively stable sky conditions;
however, these methods rarely have good skill under variable sky conditions, given the
chaotic behavior of the cloud system and the limited information contained in point-wise
observations. In these cases, the local distribution of clouds, as gathered by one or more
ground-based sky imagers, might enhance the forecast skill. This cloud-related
information allows for the generation of solar irradiance forecasts with a temporal
resolution on the order of a few minutes and a spatial resolution from 10–100 m covering
a few square kilometers around the sky imagers. The typical forecast horizon of these
systems is from 10–20 minutes, depending on the cloud height and speed.

• Forecasts up to 4 hours ahead: These are conventionally derived by extrapolating the
cloud locations into the future using CMV techniques based on satellite imagery, and
they are often referred to as nowcasts. The typical spatial resolution is from 1–5 km for
the current generation of geostationary satellites, with forecast updates every 10–30
minutes.

• Intraday and day-ahead forecasts: These are based on NWP models, which typically
offer higher performance for forecast horizons more than several hours and up to several
days ahead. These models predict the evolution of the atmospheric system, including the
formation, advection, diffusion, and dissipation of clouds. They are based on a physical
description of the dynamic processes occurring in the atmosphere by solving and
parameterizing the governing system of equations, and they depend on an observed set of
initial conditions; see Section 2.2 for details. Current global NWP models cover the Earth
with a spatial resolution from approximately 0.1–0.5° and a temporal resolution from 1–3
hours. Regional models, which are sometimes referred to as limited area models or
mesoscale models, have a spatial resolution of a few kilometers and an intrahour temporal
resolution in the area of interest.

An illustration of these different forecasting methods for various spatial and and temporal 
scales is given in Figure 1. 

In addition to this broad classification, when historical or near-real-time on-site solar irradiance 
or PV yield observations are available, these methods can be further improved by combination 
with machine learning (hybrid methods). For NWP-based methods, particularly, model output 
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statistics (MOS) techniques are often applied; see, e.g., Yang (2019a) and Yagli, Yang and 
Srinivasan (2020) These techniques are sometimes referred to as statistical downscaling 
techniques. These methods learn error patterns by comparing forecasts and observations and 
use them to reduce the error of the final prediction. 

Figure 1. Illustration of different forecasting methods for various spatial and temporal scales. The 
y-axis shows the spatial resolution, and the x-axis shows the forecast horizon intended for the
different forecasting techniques. CM-SI: cloud motion forecast based on sky imagers; CM-sat:

cloud motion forecast based on satellite imagery. Statistical models apply to all forecast horizons. 

2 Empirical and Physical Solar Irradiance Forecasting Methods 
This section presents empirical and physical solar forecasting methods. Solar irradiance 
forecasting methods using statistical approaches and machine learning are described in Section 3. 
The empirical methods introduced here rely on the correlation between the cloud structures, 
atmospheric conditions, and solar irradiance. When using satellite data to calculate solar 
irradiance with radiative transfer models, wind fields from NWP models are used for cloud 
advection. For physical solar irradiance forecasting methods, various NWP models are discussed. 

2.1 Irradiance Forecasting with Cloud Motion Vectors 
At timescales from a few minutes to a few hours, horizontal advection has a strong influence on the 
temporal evolution of cloud patterns, with the shape of clouds often remaining quite stable. Here, 
the spatial scale is also extremely important because small-scale cloud structures change faster than 
larger structures. In these situations, techniques for detecting clouds and their motion trajectories, 
referred to as CMV techniques, are used to provide valuable information for irradiance forecasting. 
Obviously, the performance of these forecasting methods degrades as the importance of local 
processes of cloud formation and dissipation, such as strong thermally driven convection, 
increases. 
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CMV-based techniques consist of the following basic steps:

• Images with cloud information are derived from satellite- or ground-based sky-imager
measurements.

• Assuming stable cloud structures and optical properties, the CMVs are determined by
identifying matching cloud structures in consecutive cloud images.

• To predict future cloud conditions, the CMVs are applied to the latest available cloud
image assuming cloud speed persistence.

• Solar irradiance forecasts are calculated from the predicted cloud structures.

Figure 2. Cloud information from ASI: (upper left) original image; (upper right), cloud 
decision map; and (bottom), shadow map with irradiance measurements. Sky image and 

irradiance measurements were taken in Jülich, Germany, on April 9, 2013, at 12:59 UTC in the 
framework of the HD(CP)2 Observational Prototype Experiment (HOPE) campaign (Macke and 

HOPE-Team 2014). Images from the University of Oldenburg 
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2.1.1 Forecasting Using Ground-Based All-Sky Imagers 
Solar irradiance forecasts at subhourly scales with high temporal and spatial resolutions can be 
derived from ground-based all-sky imagers (ASIs). Such cameras are installed horizontally and 
photograph the whole sky above them (see Figure 2, upper left image). ASIs are at times also 
called whole-sky imagers or sky imagers. The word imager is sometimes replaced by the term 
camera, even though they are not strictly identical. In the IEA PVPS Task 16, the term ASI is 
normally used. 

ASIs can capture sudden changes in irradiance, which are often referred to as ramps, at temporal 
scales from seconds to minutes (Figure 3). Cloud fields sensed from ASIs or from an assembly 
of ASIs can be resolved in high detail (e.g., 10 x 10-m resolution), allowing the partial cloud 
cover on large PV installations to be modeled and forecasted (see Figure 2). The maximum 
predictable horizon strongly depends on cloud conditions (i.e., cloud height and velocity), and it 
is constrained by the cloud speed and the field of view of the ASIs. This forecast horizon is 
typically in the range of 10 minutes, but it can reach 30 minutes in some cases. 

Figure 3. Example of 5-minute-ahead GHI forecast using a sky imager. Location: University of 
California, San Diego, November 14, 2012. Image from the University of California, San Diego, 

Center for Energy Research 

Currently, there is no defined standard for sky-imaging hardware, camera calibration, or image-
processing techniques. Systems in use include commercially available, low-cost, webcams or 
surveillance cameras and systems developed specifically for sky imaging; e.g., Urquhart et al. 
(2015). Most systems use digital RGB (red-green-blue) cameras with fish-eye lenses and 
therefore consider visible radiation, although some systems rather work with infrared cameras, 
which are more expensive. In particular, older RGB systems and some infrared cameras use a 
downward-looking camera that takes photos of an image of the sky that appears on a roughly 
spherical upward-looking mirror. (This is where the term imager comes from.) This concept—
unlike the smaller lens or dome of fish-eye cameras—has the disadvantage that the whole mirror 
must be cleaned. Moreover, some older systems use sun-tracked “shadowbands” to prevent the 
direct sunlight from reaching the camera. This can reduce lens flare-induced saturated areas in 
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the photos, but the shadowband also covers a noticeable part of the image. Because the required 
tracking of the shadowband entails higher costs and can lead to system failures, shaded devices 
have been uncommon in recent years.  

The operation of all ASI-based forecasts typically involves these five steps: 
1. Take images of the sky and detect which pixels show clouds and which do not.
2. Detect the cloud motion in image series.
3. Geolocate the clouds, including cloud height (if irradiance maps are forecasted).
4. Project the shadow on the ground or determine whether a shadow is at the location of the

sky imager (for the current and future cloud positions).
5. Estimate the radiative effect of the clouds on the ideal cloudless DNI, GHI, or GTI

(global tilted irradiance).
Machine learning methods are used in some ASI systems for these individual tasks. Some ASI 
systems do not follow these steps and instead use machine learning methods to directly connect 
image series to the current and future GHI at the site of the camera (Pierer and Remund 2019).  

Cloud detection (which is often also referred to as cloud segmentation) from ASI observations is 
performed by evaluating different image properties. The red-to-blue ratio (RBR) or multicolor 
criteria (Kazantzidis et al. 2012) have been used as a main indicator for clouds because of their 
different spectral-scattering properties (high RBR) compared to clear-sky (low RBR) conditions 
(Shields, Johnson, and Koehler 1993; Long and DeLuisi 1998). Binary cloud decision maps 
(Figure 2, top right) can be derived based on threshold procedures. Evaluating the RBR in 
relation to a clear-sky library (Chow et al. 2011; Shaffery et al. 2020) has proven helpful to 
account for a nonuniform clear-sky signal over the sky hemisphere that depends on the position 
of the sun and the turbidity of the atmosphere (Ghonima et al. 2012). Cloud detection is 
particularly difficult in the circumsolar and solar disk regions because of saturated pixel 
information that have high RBR values for not only cloudy but also clear-sky conditions. High 
potential has been seen in machine learning-based segmentation (Hasenbalg et al. 2020). 

Detecting cloud motion is the next step to derive irradiance forecasts. For instance, Chow et al. 
(2011) identified cloud motion based on a normalized cross-correlation procedure—in other 
words, by maximizing the cross-correlation between shifted areas in two consecutive images. In 
contrast, Quesada-Ruiz et al. (2014) proposed a discretization method (the sector method) of the 
cloud image that helps to derive both the direction and speed of clouds. Alternatively, cloud 
movement can be analyzed by applying optical flow techniques to subsequent images (Lucas and 
Kanade 1981; Wood-Bradley, Zapata, and Pye 2012). The derived CMVs are then used to cast 
the observed cloud scenes into the future. For point-wise forecasts at the sky-imager location, 
information about cloud height is not required because the cloud movement can be 
parameterized in terms of “pixels per second.” In contrast, for applications requiring mapping 
cloud shadows, the cloud speed derived using CMVs needs to be expressed in meters per second; 
this requires knowing the cloud height, which cannot be derived using a single ASI.  

The multiple options to determine cloud height include the application of two or more ASIs, 
ceilometers, distributed radiometers, satellite methods, and NWP data. In particular, the most 
accurate information on cloud-base height directly above the instrument is currently obtained 
using ceilometers (Arbizu-Barrena et al. 2015), which are typically employed at airport weather 
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stations; however, the different clouds seen in a sky image can have different cloud heights, and 
the ceilometer measures only the cloud height directly above it. Thus, the applicability of 
ceilometers for this purpose strongly depends on the particular cloud arrangement. Retrieving the 
cloud-top height from satellite images gives spatially continuous information but shows large 
uncertainties. Different methods to determine cloud height using combined information from 
more than one ASI are described by Nguyen and Kleissl (2014) and Wang, Kurtz, and Kleissl 
(2016). Some of these methods allow deriving different cloud heights for the individual clouds 
seen in the sky image (Peng et al. 2015). Additionally, the combination of one ASI’s CMV in 
pixels per second with another device’s absolute CMV in meters per second can be used to 
determine the cloud height. Spatially distributed radiometers can be used to derive CMVs in 
meters per second, as described by Wang, Kurtz, and Kleissl (2016) and Kuhn et al. (2017a). A 
system using two ASIs can achieve higher accuracy than the application of NWP and distributed 
radiometers (Kuhn et al. 2018). 

Cloud shadow maps at the surface (see Figure 2, bottom) are produced by projecting the 
forecasted cloud scenes with their assigned height using information about the position of the sun 
and a digital elevation model. The impact of the projection method on solar forecast accuracy 
can be large. Local irradiance or PV power measurements can be used to estimate the effect of 
the clouds on irradiance or PV power. Urquhart et al. (2013) analyzed the frequency distributions 
of PV power normalized to clear-sky conditions to determine a clear and a cloudy mode and to 
assign them to shaded and unshaded cells, respectively. Schmidt et al. (2016) used the clear-sky 
index derived from pyranometer measurements to determine the forecasted all-sky GHI. 
Similarly, Blanc et al. (2017) used the beam clear-sky index determined from the last 30 minutes 
of pyrheliometer measurements to derive the cloud transmittance. Additional information on 
cloud type in the monitored scene indicates cloud optical thickness and cloud height and can be 
obtained with cloud classification algorithms or by using infrared and thermographic sky 
imagers. Ghonima et al. (2012) proposed a method to differentiate thin and thick clouds for 
various atmospheric conditions using a clear-sky library. Gauchet et al. (2012) proposed using a 
regression model in combination with a clear-sky model to estimate the surface solar irradiance 
from segmented sky images with information about clear-sky areas; bright and dark clouds; 
circumsolar area; and solar disk. This specific segmentation is made to optimally accommodate 
various luminance thresholds. 

Instead of using only one or a few ASI systems, networks of approximately 10 or more ASIs can 
be created to increase the spatial coverage, the forecast horizon, and the accuracy of 
observations. The combination of several ASIs can provide a more accurate 3D reconstruction of 
the cloud field (Mejia et al. 2018). Also, the combination of several ASI-derived irradiance maps 
or intermediate results (e.g., segmentation and cloud height) can be used to improve the nowcasts 
(Blum et al. 2019). In addition to irradiance nowcasting, ASIs have many other applications that 
are relevant to meteorology and solar energy. Deriving GHI and/or DNI from sky images is 
discussed by Schmidt et al. (2016), Chauvin et al. (2018), Kurtz and Kleissl (2017), and Gauchet 
et al. (2012). Estimating the sky radiance distribution is also possible (Chauvin et al. 2015). 
Further, the aerosol optical depth (AOD) can be retrieved from ASIs as well (e.g., Olmo et al. 
2008 and Kazantzidis et al. 2017). 

Another camera-based nowcasting method uses so-called shadow cameras installed at elevated 
positions, such as on towers or mountains, that take images of the ground around their position 
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(Kuhn et al. 2017a). In such photos, cloud shadows can be detected, and the brightness of the 
pixels contains information on the irradiance at the pixel of interest. Unlike ASIs, these systems 
have the advantage that no modeling of the clouds is required to obtain irradiance maps; however, 
the development of shadow-camera systems is still in an early phase compared to ASI systems. 

2.1.2 Satellite-Based Forecasts 
Forecasts up to approximately 6 hours ahead require wide-area observations of cloud fields. For 
example, assuming a maximum cloud velocity of 160 km/h, a region of approximately 2,000 km 
by 2,000 km would need to be monitored if the goal is to track any arriving cloud 6 hours ahead. 
Satellite data with broad coverage are appropriate sources for these horizons. 

Cloud and irradiance information from satellite images can be derived by a variety of methods. 
In principle, all of them can be applied to cloud predictions using CMVs to obtain forecasts of 
solar irradiance. In addition, multiple methods exist to derive CMVs, as described in Section 
8.2.1.1 for ASIs. Methods to calculate CMVs from satellite images have also been developed 
and are routinely used in operational weather forecasting, where CMSs are used to describe 
wind fields at upper levels in the atmosphere in NWP models. 

Satellite-based nowcasting schemes for solar irradiance forecasts have been developed mostly in 
the past decade based on CMVs or sectoral cloud tracking (Hammer et al. 2003; Schroedter-
Homscheidt and Pulvermüller 2011). The satellite-based forecasting scheme from the University 
of Oldenburg in Germany (Lorenz, Hammer, and Heinemann 2004; Kühnert, Lorenz, and 
Heineman 2013) is introduced here as an example of such a system. It uses images of the 
geostationary Meteosat Second Generation (MSG) satellites. The semiempirical HELIOSAT 
method (Hammer et al. 2003) is applied to obtain information about clouds and irradiance. A 
characteristic feature of the method is the dimensionless cloud index, which provides 
information about cloud transmittance. 

CMVs are derived by identifying corresponding cloud patterns in two consecutive images 
(Figure 4). Rectangular areas—the “target areas”—are defined with an approximate size of 90 
km by 90 km. This is large enough to contain information about temporally stable cloud 
structures and small enough that cloud motion for this area can be described by a single vector. 
Mean square pixel differences among target areas in consecutive images (n0 and n-1) are 
calculated for displacements in all directions (Figure 4, a–c). The maximum possible 
displacement (“search area”) is determined by the maximum wind speeds at typical cloud 
heights. The displacement that yields the minimum mean square pixel difference for a given 
target area is assigned as a motion vector (Figure 4, d). The derived motion vectors are applied 
to the cloud index image, n0, to predict future cloud conditions. A smoothing filter is applied to 
the predicted cloud index image to eliminate randomly varying small-scale structures that are 
hardly predictable. Finally, solar irradiance is derived from the predicted cloud index images 
using the HELIOSAT method. 

The SolarAnywhere short-term forecasting scheme (Perez and Hoff 2013) for the United States 
is based on Geostationary Operational Environmental Satellite (GOES) imagery and follows 
a similar approach to detect cloud motion. It is also based on a semiempirical cloud index 
method. In parallel, Solargis has developed a CMV short-term forecasting scheme that is run 
under the principles just described but incorporates a multiresolution 
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treatment of cloud structures. Another method—presented by Schroedter-Homscheidt and 
Pulvermüller (2011)—discriminates between tracking optically thin cirrus and tracking optically 
thick cumulus or stratus with respect to the need for increased accuracy in direct irradiance 
nowcasting aimed at concentrating technologies. 

Müller and Remund (2014) proposed a method that combines cloud index values retrieved from 
MSG satellites with wind fields from a NWP model. The wind fields are predicted with the 
Weather Research and Forecasting (WRF) model (Skamarock et al. 2005) with hourly resolution 
and are applied to the forward propagation of the observed cloud patterns from the satellite 
imagery. Information about the height of the monitored clouds is needed to determine the 
corresponding NWP model’s pressure level. Müller and Remund (2014) assumed fixed cloud 
heights for this purpose. An advantage of the application of NWP wind fields over satellite-
derived CMVs is the potential to describe changes in the direction and speed of cloud movement 
during the extrapolation process. 

Figure 4. Schematic representation of the CMV derivation using satellite images. Images 
reproduced from Kühnert et al. (2013) 

A method for satellite-based short-term forecasting using a physical cloud and irradiance 
retrieval scheme was introduced by Miller, Heidinger, and Sengupta (2013) and Miller et al. 
(2018). The method processes GOES satellite observations with the National Oceanic and 
Atmospheric Administration (NOAA) Pathfinder Atmospheres Extended (PATMOS-x) retrieval 
package (Heidinger et al. 2014), which is a stand-alone radiative transfer code, and combines 
them with wind field data from the Global Forecast System (GFS) model. Cloud properties are 
retrieved with PATMOS-x in a first step. Next, the cloud fields are advected using GFS winds at 
the vertical level matching the cloud-top height as retrieved from PATMOS-x. Finally, solar 
irradiance at the surface is calculated with radiative transfer calculations using predicted cloud 
properties and additional atmospheric parameters. 
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Another satellite-based irradiance scheme that is based on cloud physical properties (CPPs) is the 
Spinning Enhanced Visible and InfraRed Imager (SEVIRI) CPP method, which uses the SEVIRI 
instrument onboard the MSG satellites. The method is based on advecting the cloud properties 
and is used to forecast both GHI and DNI. Details about the CPP surface solar forecasting 
algorithm and its evaluation are presented by Wang et al. (2019). The forecast horizon of this 
method is from 0–4 hours at a 15-minute temporal resolution. The forecast has been tested over 
the Netherlands at a spatial resolution of approximately 4 km by 6 km. CMVs are derived from 
three cloud properties (cloud top height, cloud optical thickness, and particle effective radius) 
with a method adapted from the weather radar precipitation forecast system of the Royal 
Netherlands Meteorological Institute (KNMI). The advected cloud properties are used as input 
for the CPP-SICCS (Surface Insolation under Clear and Cloudy skies derived from SEVIRI 
imagery) algorithm to calculate the surface solar irradiance.  

2.2 Irradiance Forecasting with Numerical Weather Prediction 
NWP models are routinely operated by weather services to forecast the state of the atmosphere. 
Starting from initial conditions that are derived from routine Earth observations from worldwide 
networks of ground, airborne, and spaceborne sensors, the temporal evolution of the atmosphere 
is simulated by solving the equations that describe the physical processes occurring in the 
atmosphere. Such physical modeling is the only feasible approach when there is little correlation 
between the actual observations and the forecasted values, which is typically the case for time 
horizons longer than approximately 5 hours ahead. A comprehensive overview of NWP 
modeling was given by Kalnay (2003). 

Global NWP models predict the future state of the atmosphere worldwide. To determine the 
initial state from which an NWP model is run, data assimilation techniques are applied to make 
efficient use of worldwide meteorological observations (Jones and Fletcher 2013). These include 
observations from ground-based weather stations, buoys, and spaceborne sensors (i.e., satellites). 
The simulation with NWP models involves spatial and temporal discretization, and the resolution 
of this discretization determines the computational cost of the simulation. In addition, many 
physical processes occur on spatial scales much smaller than the grid size—including, for 
example, condensation, convection, turbulence, as well as scattering and absorption of shortwave 
and longwave radiation. The effect of these unresolved processes on the mean flow at the 
model’s grid size is evaluated with the so-called parameterizations of atmospheric physics. They 
include interactions of the land and ocean with the atmosphere, vertical and temporal 
development of the planetary boundary layer, cumulus triggering and cloud microphysics, as 
well as shortwave and longwave radiation. The physical parameterizations are a key component 
of the prediction with NWP models. They bridge the small-scale and large-scale processes, and 
they make possible the convergence of the numerical routines that solve the physical equations. 
Today, global NWP models are run by approximately 15 national and international weather 
services, and their resolutions range from approximately 10 km to approximately 50 km. The 
temporal resolution of the global model outputs is typically 1 or 3 hours, and their forecasts are 
normally updated every 6 or 12 hours.  

Mesoscale or regional models cover only a limited area of the Earth. They take the initial 
and lateral boundary conditions from a previous global NWP model run and bring the spatial and 
temporal grid of the global NWP model down to a finer resolution. Weather services typically 
operate mesoscale models with a spatial resolution ranging from 1–10 km, and they provide 
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hourly forecasts, though higher resolutions are feasible. Compared to global models, the higher 
spatial resolution of mesoscale models allows for explicit modeling of small-scale atmospheric 
phenomena. 

For irradiance forecasting, the parameterizations of radiation transfer and cloud properties are of 
special importance. Larson (2013) compared the respective model configurations with respect to 
GHI for four operational NWP models, including the Integrated Forecast System (IFS) of the 
European Center for Medium-Range Weather Forecasts (ECMWF) and the Global Forecast 
System (GFS) run by NOAA. In particular, Larson (2013) discussed deep and shallow cumulus 
parameterizations, turbulent transport, stratiform microphysics and prognosed hydrometeors, 
cloud fraction and overlap assumptions, aerosols, and the shortwave radiative transfer schemes. 
But Larson (2013) emphasized that “because of the strong feedback and interactions of physical 
processes in the atmosphere,” other processes might have a significant impact on irradiance 
forecasting. 

Today, most NWP models offer GHI as direct model output, and some also provide forecasts of 
direct and diffuse irradiance. Although in principle direct model output can be used for solar 
energy applications, in practice additional post-processing is customarily applied to improve 
forecast accuracy. 

2.2.1 Examples of Operational Numerical Weather Prediction Models 
This section describes some examples of NWP models enumerated together with their 
spatial resolutions and output time intervals. In particular, it highlights cloud fraction 
parameterizations and radiation schemes. Additionally, specific references are provided with respect 
to the application and evaluation of irradiance forecasts in the context of solar energy applications. A 
comparison of GHI forecasts based on these models was described by Lorenz et al. (2016) for 
Europe and by Perez et al. (2013) for the United States, Canada, and Europe. It should be 
emphasized that the sample of operational models and applications given here is non-exhaustive; it 
simply summarizes the research experience and lessons learned from some research completed 
within the frameworks of the IEA SHC Task 36 and Task 46 and the IEA PVPS Task 16. 

The IFS of the ECMWF is a global model currently being operated with a horizontal grid spacing 
of approximately 12 km and 137 vertical levels for high-resolution deterministic forecasts. 
Operational output is available with a temporal resolution of 3 hours and up to 6 days ahead, with a 
higher resolution of 1 hour being accessible in the framework of research projects. The model is 
cycled every 12 hours. The radiation code is based on a version of the Rapid Radiation Transfer 
Model for General Circulation Models (RRTMG) that has been specially developed for use in 
NWP models (Mlawer et al. 1997; Iacono et al. 2008). Cloud-radiation interactions are taken into 
account in detail by using the values of cloud fraction and liquid, ice, and snow water content from 
the cloud scheme using the Monte Carlo Independent Column Approximation (McICA) method 
(Pincus, Barker, and Morcrette 2003; Morcrette et al. 2008). McICA uses a stochastic approach to 
infer the cloud extinction of shortwave and longwave solar radiation from only a random selection 
of calculations. The prognostic scheme for clouds and large-scale precipitation is based on Tiedtke 
(1993). The ECMWF irradiance forecasts were analyzed by Lorenz et al. (2009) with respect to 
different relevant properties for PV power prediction applications. In addition, Lorenz et al. (2011) 
proposed and evaluated an approach based on the ECMWF forecasts for regional PV power 
prediction for improved electric grid integration.  
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NOAA’s GFS is currently being operated at a spatial resolution of approximately 13 km and 64 
vertical levels; however, the outputs are provided in a regular latitude/longitude grid with a 
resolution of 0.25º and 46 levels, with hourly resolution up to 120 hours ahead and 3-hour 
resolution up to 240 hours ahead. The model is cycled every 6 hours. Model physics related to 
clouds and radiation were summarized by Larson (2013). Note that cloud fraction is a diagnostic 
variable in the GFS model in contrast to the IFS model. Mathiesen and Kleissl (2011) compared 
intraday GHI forecasts of the GFS and IFS forecasts from the ECMWF and the North American 
Model. 

Environment Canada’s Canadian Meteorological Centre operates the Global Environmental 
Multiscale (GEM) model. It is run in different configurations, including a regional deterministic 
configuration (Mailhot et al. 2006) that generates forecasts up to 48 hours ahead at a 7.5-minute 
time step and with a spatial resolution of approximately 15 km centered at the grid. Pelland, 
Galanis, and Kallos (2013) investigated solar irradiance and PV power forecasting with post-
processing applied to the high-resolution GEM forecasts.  

The mesoscale (or regional) WRF model (Skamarock et al. 2005) was developed in the 
framework of a long-term collaborative effort of several institutes led by the National Center for 
Atmospheric Research (NCAR) in the United States. Now it is a community model, meaning it 
is publicly and freely available and can receive contributions from all participants. The WRF 
model is nonhydrostatic, has multiple nesting capabilities, and offers several schemes for each 
different parameterization of the atmospheric physical processes. This allows the WRF model to 
be adapted to widely different climate conditions and different applications over virtually any 
region of interest. The shortwave radiation parameterization usually runs the Dudhia (1989) 
scheme; however, the latest version of the WRF model includes up to eight different shortwave 
parameterization schemes (v. 3.9, 2017). This includes the RRTMG radiative scheme already 
mentioned for the ECMWF’s IFS model but also other advanced and research-class radiative 
models, such as the New Goddard shortwave radiation scheme of the WRF model (Chou and 
Suarez 1999), the NCAR Community Atmosphere Model (Collins et al. 2004), the Fu-Liou-Gu 
model (Gu et al. 2011), and the Fast All-sky Radiation Model for Solar applications (FARMS) 
model (Xie, Sengupta, and Dudhia 2016). The user can select any of these schemes. The current 
WRF model’s cloud fraction schemes are diagnostic. The impact of the resolved topography on 
the downward solar radiation can be optionally included in the computations. The direct aerosol 
impact can also be modeled using built-in climatologies or inputs from the user. 

The ability of the WRF model and its precursor, the fifth generation of the Penn State 
University/NCAR Mesoscale Model (MM5), to produce solar radiation forecasts have been 
evaluated (Guichard et al. 2003; Zamora et al. 2003; Zamora et al. 2005; Ruiz-Arias et al. 2008; 
Wen et al. 2011). More recently, and mostly toward solar energy applications, the WRF model 
has been extensively evaluated. For instance, within the framework of the IEA SHC Task 36 and 
Task 46, Lara-Fanego et al. (2012) evaluated 3-day-ahead hourly and 10-minute WRF model 
forecasts of GHI and DNI in Spain. Perez and Hoff (2013) conducted a benchmarking study of 
multiple NWP models, including the WRF model, at a number of European and North American 
radiometric sites. Lorenz et al. (2016) compared the GHI predictions of multiple models, 
including the WRF model, and various model configurations against irradiance measurements in 
Europe. Many other studies from the last few years have evaluated the model over different 
worldwide regions, including Isvoranu and Badescu (2015) in Romania; Zempila et al. (2016) in 
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Greece; Aryaputera, Yang, and Walsh (2015) in Singapore; He, Yuan, and Yang (2016) in 
China; Lima et al. (2016) in Brazil; Gueymard and Jimenez (2018) in Kuwait; and Sosa-Tinoco 
et al. (2016) in Mexico. 

Other studies have analyzed the causes of model errors, and some studies have proposed 
improvements. For instance, Mathiesen, Collier, and Kleissl (2013) proposed a direct cloud 
assimilation technique tailored for the WRF model to improve its representation of clouds along 
the California coastline for improved solar radiation forecasts. Ruiz-Arias et al. (2013) performed 
surface clear-sky shortwave radiative closure intercomparisons of various shortwave radiation 
schemes, including the RRTMG, Goddard, and Dudhia models, in which RRTMG showed the 
highest performance, whereas some deficiencies were found in the the Goddard radiative scheme. 
A correction for these deficiencies was proposed by Zhong, Ruiz-Arias, and Kleissl (2016). Ruiz-
Arias, Dudhia, and Gueymard (2014) proposed a parameterization of the shortwave aerosol optical 
properties for surface direct and diffuse irradiances assessment. And Ruiz-Arias et al. (2015) 
described problems with WRF when simulating convective clouds in the Iberian Peninsula and 
highlighted the need for a dedicated shallow cumulus scheme to reduce model biases. 

An important milestone in the use of the WRF model for solar radiation applications has been the 
recent development of WRF-Solar, a dedicated suite of WRF model parameterizations for solar 
radiation forecasting (Deng et al. 2014; Ruiz-Arias, Dudhia, and Gueymard 2014; Thompson and 
Eidhammer 2014) within the U.S. Department of Energy’s Sun4Cast project (Haupt et al. 2016). 
Some of these improvements, and others, have been summarized by Jimenez et al. (2016b). 
Moreover, the Sun4Cast project has contributed to the development of the Multisensor Advection 
Diffusion nowCast (MADCast) system (Descombes et al. 2014), which is a particular 
configuration of the WRF model for fast assimilation of satellite reflectance images. That 
configuration can be used to obtain a proxy field to cloud fraction that can be subsequently 
advected in WRF and used to compute solar radiation nowcasts. Lee et al. (2017) presented 
a comparative evaluation of WRF-Solar, MADCast, and satellite-based forecasts and found that 
WRF-Solar performed generally well at predicting GHI under challenging situations in California. 

The WRF model is operated for solar irradiance forecasting at several public and private entities, 
including Solargis (Slovakia); Meteotest (Switzerland); GL-Garrad Hassan (Mathiesen, Kleissl, 
and Collier 2013); the Atmospheric Sciences Research Center of the University of Albany as part 
of the operational air quality forecasting program; and AWS Truepower, a UL company in the 
United States. 

The High Resolution Limited Area Model (HIRLAM) is a hydrostatic regional NWP model 
operated by several national meteorological services in Europe, including the Spanish National 
Weather Service and the Danish Meteorological Institute. The Spanish National Weather Service 
runs HIRLAM four times daily in three spatial configurations (one covering Europe at a 
resolution of 16 km and two covering Spain and the Canary Islands at a resolution of 5 km) with 
40 vertical levels. The Danish Meteorological Institute runs its highest-resolution HIRLAM 
model, “SKA,” for an area covering Northwestern Europe with a grid size of 0.03° (≈3 km) and 
65 vertical levels. HIRLAM uses the clear-sky irradiance scheme of Savijärvi (1990) and the 
cloud scheme of Wyser, Rontu, and Savijärvi (1999). The nonhydrostatic HIRLAM ALADIN 
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Regional Mesoscale Operational NWP In Europe (HARMONIE) regional model is being run 
experimentally by the Spanish National Weather Service daily over Spain and the Balearic 
Islands at a resolution of 2.5 km, with 65 vertical levels. Closely related to HARMONIE and 
HIRLAM is the STRÅNG mesoscale model, which provides hourly nowcasts of GHI, DNI, 
erythemal ultraviolet, photosynthetically active radiation, and sunshine over Scandinavia at 2.5-
km resolution. 

The German Weather Service (Deutscher Wetterdienst, or DWD) has an operational model chain 
consisting of the global model ICON (ICOsahedral Nonhydrostatic); the ICON-EU, which is the 
nested European regional model; and the regional model for Germany called COSMO-D2. The 
horizontal resolution of the ICON model is 13 km, and it has 90 model layers extending to 75 km 
(Zängl et al. 2014). The ICON-EU is nested via a two-way interaction. It has a horizontal model 
resolution of approximately 7 km and 60 model layers up to a height of 22.5 km. The third model 
is the regional nonhydrostatic COSMO-D2 model, which has a horizontal resolution of 2.2 km 
and 65 vertical levels. The COSMO model was developed by the Consortium for Small-
scale Modeling (COSMO), which consists of the national meteorological services of Germany, 
Greece, Italy, Poland, Romania, Russia, and Switzerland. The COSMO-D2 (Baldauf et al. 2011) 
is a model for short-term forecasts of +27 hours, except for the 03:00 UTC run, which has a 
forecast length of +45 hours. The radiation scheme in the ICON and ICON-EU is currently 
called once per hour; however, the radiative transfer scheme of Ritter and Geleyn (1992) is 
called every 15 minutes within COSMO-D2. Thus, the direct and diffuse radiation predictions 
are available every 15 minutes via direct model output. Using the regional COSMO model, 
DWD performed a statistical analysis to detect those days with the highest forecast error in 
Germany, and they identified that NWP forecasts have frequent errors in the presence of low 
stratus. To address those situations, they proposed a low stratus-detection method that 
operationally uses post-production. 

Another example is NOAA’s High-Resolution Rapid Refresh (HRRR) model for the United 
States, which provides forecasts at 3-km by 3-km resolution with hourly updates. 

Finally, the “SKIRON” regional weather forecasting system (Kallos 1997) is operated for solar 
energy applications at the National Renewable Energy Centre of Spain (Gastón et al. 2009). 

3 Irradiance Forecasting Based on Irradiance Time Series and Post-
Processing with Statistical and Machine Learning Methods 

Statistical learning models are widely used for solar irradiance and power forecasting. 
The dependence between input variables (predictors) and forecast values (predictands) is 
established in a training phase by learning from historical data, assuming that patterns in 
the historical data sets are repeated in the future and thus might be exploited for forecasting. 
Statistical methods include classical regression methods, such as autoregressive and autoregressive 
integrated moving average models as well as machine learning or artificial intelligence techniques, 
such as artificial neural networks (ANNs), k-nearest neighbors, or support vector regression. 
Coimbra and Pedro (2013a), Diagné et al. (2013), and Yang et al. (2018) provided an overview of 
different statistical approaches used for solar irradiance forecasting. Voyant et al. (2017) and Sobri 
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et al. (2018) reviewed the topic with a heavy focus on the use of machine learning methods for 
solar radiation or power forecasting as well as for post-processing. 

Statistical and machine leaning models are applied for different purposes in irradiance and PV 
power forecasting. Pure time-series approaches aim to derive solar irradiance or power forecasts 
based solely on local measurements without involving any physical modeling (i.e., time-series 
approaches with no exogenous input). They are suitable for forecast horizons from several 
minutes to several hours ahead. 

Statistical and machine learning methods also play an important role in enhancing the output of 
NWP models and CMV forecasts. Regardless of the physics-based forecasting model used, 
errors that are partly stochastic and partly systematic will always remain. These errors can be 
reduced with statistical learning based on historical data sets of predicted and measured 
irradiance or PV power. Further, statistical learning methods can be employed to derive 
quantities not included in the native model output. Different terminology is used for this 
combination of statistical and physical forecasting methods, depending on the perspective of the 
researchers. The community of statistical modeling and artificial intelligence refers to these 
models as statistical models with exogenous input. Meteorologists commonly use the terms 
statistical post-processing or, more specifically, model output statistics (MOS) in the context of 
NWP, which is the terminology adopted here.  

Section 8.3.1 provides an overview of selected machine learning models, and Section 8.3.2 
addresses pure time-series models based on irradiance measurements. Finally, Section 8.3.3 
describes the application of statistical and machine learning models for post-processing. 

3.1 Examples of Machine Learning Models Applied for Forecasting 
The use of state-of-the-art machine learning models is popular in irradiance as well as in PV 
power forecasting. This section lists several approaches discussed by Winter et al. (2019). 

3.1.1 Artificial Neural Networks 
ANNs constitute one of the most versatile machine learning methods and are known for their use 
in complex tasks such as image or speech recognition (LeCun et al. 1989; Sak and Beaufays 2014). 

As described by Bishop (1995), an ANN consists of a fixed number of nodes, called units, that 
can take on numerical values and are arranged in several layers. The input layer contains one unit 
for each feature of the data set, whereas the output layer, in case of a single regression problem, 
is only one unit. The layers between the input and output layers are referred to as hidden layers. 
The key task is to establish a connection between the nodes by assigning to each unit in one layer 
the weighted sum of the previous layer’s units, and to then apply a nonlinear activation function. 
In the case of a regression problem, a linear activation function is applied to the weighted sum of 
the output unit. 

By training an ANN on a given set of input and output data, all its weights are adjusted to 
minimize an error function, typically the mean square error (MSE). This is usually done by back-
propagation, an iterative process for calculating the gradient of the error function with respect to 
each weight (Rumelhart, Hinton, and Williams 1986). In each step, the weights get updated by 
using a gradient descent optimization algorithm. An alternative option is the method of adaptive 
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moment estimation, or “Adam,” as described by Kingma and Ba (2015). Instead of calculating 
the gradient of the error function with respect to the full data set, in each step the weights can be 
updated only with respect to a subset of the data set (see Bottou 1998; Ruder 2016). The weights 
can be initialized using a common heuristic described by Glorot and Bengio (2010). 

To enable an ANN to learn nonlinear relationships between input and output, a nonlinear 
activation function must be chosen. For example, the leaky rectified linear unit activation 
function can be used (Maas, Hannun, and Ng 2013). 

3.1.2 Extreme Learning Machines 
An extreme learning machine, as proposed by Huang, Zhu, and Siew (2006), is an ANN with a 
single hidden layer between the input and output layers. Its learning method does not rely on 
gradient descent. Instead, the weights between the input and hidden layers are chosen randomly. 
In this way, only the weights between the hidden and output layers need to be determined. 
Because this is just a linear regression problem, an analytic solution exists, which can be 
calculated directly without an iterative optimization algorithm. Hence, training the model is 
considerably faster while maintaining good performance of the model. 

3.1.3 Gradient Boosted Regression Trees 
Gradient boosted regression trees are an ensemble technique using multiple classification and 
regression trees (CART) (Breiman et al. 1984). The CART algorithm creates binary decision 
trees, which means that at each new node the data is split into two parts according to a threshold 
value. Starting with a root node, which in general contains all training data, the tree grows until 
some stop condition is reached. The last nodes form the tree’s leaves. Each splitting leads to 
either another node or a leaf. The leaf contains the class to be predicted. In the case of regression, 
a leaf returns the mean value of the training samples it contains. 

The principle of boosting is described by Friedman (2001). Starting with a single CART tree that is 
fit to minimize the MSE on the training data, the following trees are trained consecutively so that 
each new tree predicts the residual error. This residual error is proportional to the gradient of the 
MSE. By scaling the new tree’s prediction with a step size between 0 and 1 and by adding it to the 
current ensemble, every new tree aims to further reduce the MSE of the ensemble’s prediction. 

3.1.4 Random Forest 
A random forest is another technique based on ensembles of CARTs and is presented by 
Breiman (2001). The ensemble’s prediction is the average over all single tree predictions. Each 
tree is trained on a bootstrap data set generated by randomly drawn samples with replacement 
from the original data set (Efron 1979). Further, for each node split, only a random subset of 
features is considered. By omitting data randomly, the resulting trees become less correlated. 
This lowered correlation of single trees has been observed to reduce the model error. 

3.2 Time-Series Models Based on Measurements  
Intrahour or hours-ahead solar irradiance and PV power forecasting with time-series models use 
recent measurements of irradiance or PV power as a basic input, possibly complemented by 
measurements of other variables. Examples are the application of a coupled autoregressive and 
dynamic system model for forecasting solar radiation on an hourly timescale, as described by 
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Huang et al. (2013); the comparison of ANN and classical time-series models. as by Reikard 
(2009); and the short-term PV power prediction approach of Bacher, Madsen, and Nielsen 
(2009). Through their review of machine learning methods, Voyant et al. (2017) concluded that 
although ANN and autoregression-style methods still dominate statistical forecasting, other 
methods (e.g., support vector regression, regression tree, random forest, and gradient boosting) 
are increasingly being used. Although the ranking of such methods is complicated by many 
factors, it generally holds that a multi-model approach results in improvement in forecasting 
performance (Zemouri, Bouzgou, and Gueymard 2019). 

For any statistical model, the selection and availability of appropriate input variables as well as the 
optimized preprocessing of the data is of critical importance for good forecast performance. Also, 
the choice of the model configuration (e.g., the ANN architecture or the selection of 
hyperparameters in machine learning models) is essential. Finally, the setup of the training sample 
(e.g., the number of days and sites used for the training) has a noteworthy influence on the forecast 
accuracy. Coimbra and Pedro (2013a) showed the benefits of the application of a generic algorithm 
to identify the most suitable ANN architecture, preprocessing scheme, and training data.  

The advantages and limits of purely statistical approaches are discussed next. High-quality 
measurements of the actual surface solar irradiance or PV power are the best possible starting 
point for any forecast. In comparison, the assessment of the initial irradiance conditions (i.e., the 
irradiance analysis) with an empirical or physical forecasting model shows considerably higher 
uncertainties. Any physics-based forecasting model has an inherent uncertainty, regardless of the 
forecast horizon, that is caused by limits in spatial and temporal resolution, uncertainty in input 
parameters, and simplifying assumptions within the model. Time-series models exploit the 
autocorrelation in time series of solar irradiance, cloud cover and, possibly, other explanatory 
variables. For very short-term forecast horizons, forecasts based on accurate on-site 
measurements and statistical methods reach forecast errors that are smaller than even the NWP 
analysis errors or the initial errors of irradiances derived from satellite images. 

Given the inherent chaotic nature of weather phenomena, any existing autocorrelation decreases 
as the time lag between time-series instances increases. Hence, the performance of these models 
is (1) strongly determined by the underlying autocorrelation of each particular weather condition 
and (2) decreases as forecast lead time increases. For longer forecast horizons, wide-area 
observations (e.g., those from satellites) or physical models (e.g., NWP models) are required to 
meet the forecast skill requirements.  

Pure time-series approaches are typically applied to forecast horizons ranging from several minutes 
to a few hours ahead. Evidently, their performance in comparison to other methods strongly 
depends on the prevailing climate and weather conditions (e.g., the stability of the sky situation), 
the spatiotemporal resolution of the forecasts, and the models to which they are compared. 

In this context, Bacher, Madsen, and Nielsen (2009) compared an autoregressive model for 
hourly solar power forecasting combined with and without exogenous inputs from a diverse 
origin. The study was based on PV plants in Denmark, and the authors found that ground-
observed data are the most important class of inputs up to approximately 2 hours ahead, whereas 
the NWP forecast parameters are adequate for next-day horizons. A comparison of pure time-
series models with satellite-based CMV forecasts was given by Wolff et al. (2016) for PV 
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systems in Germany. The authors found that CMV forecasts outperformed the time-series 
approach for forecast horizons more than 30 minutes ahead for single sites and for forecast 
horizons of more than 2 hours ahead for the German average.  

Further, sky camera imagery-based forecasting methods were demonstrated to be valuable for 
short-term high-resolution forecasting. Pedro et al. (2018) and Huang et al. (2019) assessed 
intrahour hybrid forecasting models that combine statistical (or machine learning) methods with 
information extracted from sky imagery and found substantial improvements. Huang et al. 
(2019) proposed the conditional autoregressive method of clear-sky index, which can separate 
and model characteristic weather events through the identification of key condition variables. 
Based on high-frequency data measured in Australia, it was shown that by adding exogenous 
forecasts derived from sky imagery, their hybrid model could produce accurate forecasts 
seamlessly across timescales from 10 seconds to 10 minutes ahead. 

3.3 Statistical Post-Processing Methods 
Statistical post-processing (or machine learning with exogenous input) plays an important role in 
irradiance and PV power forecasting. Post-processing methods are applied to: 

• Reduce model errors by considering unaccounted or partially accounted local and
regional effects (e.g., topography and aerosols)

• Combine the outputs of different models
• Derive quantities that are not direct model outputs.

In what follows, various statistical post-processing methods are summarized for the possible 
applications enumerated. 

3.3.1 Model Output Statistics to Reduce Forecast Errors 
MOS are widely used to refine the output of NWP models, primarily to account for local 
variations in weather and surface conditions (Glahn and Lowry 1972). They use measurements 
and/or climatology for specific locations as a basis to adapt the forecasts. For example, MOS 
techniques constitute a powerful tool to adapt the results from NWP or satellite-based models to 
site-specific conditions (Gueymard et al. 2012). For solar irradiance forecasting, satellite-derived 
values might be used in lieu of ground measurements. The set of predictors consists of NWP 
output and might be extended by including any relevant information—for example, prior 
observations or climatological values.  

Originally, the term model output statistics was associated with the use of regression equations; 
however, a generalization of this concept now involves other statistical approaches. Lorenz et al. 
(2009) applied a bias correction MOS based on solar elevation and clear-sky index to ECMWF 
irradiance forecasts. Kalman filters have also been proposed by Pelland, Galanis, and Kallos (2013) 
to improve irradiance forecasts of the Canadian GEM model and by Diagné et al. (2014) in the case 
of WRF model solar irradiance forecasts. Marquez and Coimbra (2011) investigated the application 
of ANNs to predicted variables from a weather forecasting database, and Gastón et al. (2009) used a 
machine learning algorithm to enhance SKIRON solar irradiance forecasts. Pierro et al. (2015) 
proposed a MOS technique to correct WRF-based GHI forecasts by coupling two intermediate MOS 
consisting of correlations with relative humidity and ANNs, respectively. Other powerful post-
processing approaches have been thoroughly reviewed by Yang and van der Meer (2021). 
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3.3.2 Combination of Forecast Model Outputs 
Combining the output of different models can considerably increase the forecast accuracy. First, 
simple averaging is beneficial for models with similar accuracy, exploiting the fact that forecast 
errors of different models are usually not perfectly correlated (Perez et al. 2013; Lorenz et al. 2016). 

Combining methods using more advanced techniques might also account for strengths and 
weaknesses of the different models for certain situations—for example, by adapting the 
contribution of each model depending on the weather situation. In particular, they might be 
applied to establish a forecast consensus covering horizons from several minutes to several days 
ahead by integrating measurements, climate monitoring, and NWP forecasts. Various approaches 
to this aim have been proposed. For instance, Lorenz and Heinemann (2012) used a weighted 
average with weights optimized for each forecast horizon. Sanfilippo et al. (2016) applied a 
multi-model approach to solar forecasting that uses supervised classification of forecasting 
evaluation results to select the best predictions from persistence, support vector regression, and 
diverse stochastic models. Wolff et al. (2016) and Mazorra Aguiar et al. (2016) combined 
forecasts based on support vector regression machines and ANNs respectively. Yang et al. 
(2017) used a hierarchical scheme and minimization of the trace of the forecast error covariance 
matrix. Within the context of the Sun4Cast project, NCAR’s DICast system (Myers et al. 2011, 
2012) has been applied to blend multiple solar radiation forecasts. This system—which has 
already been applied in other forecasting areas, such as transportation, agriculture, and wind 
energy—consists of a two-step process: (1) a statistical bias correction process using a dynamic 
MOS and (2) optimization of the model blending weights for each lead time (Haupt et al. 2016).  

3.3.3 Post-Processing to Derive Additional Quantities 
Not all quantities of interest in the context of irradiance forecasting (i.e., GTI, DNI or PV power) 
are always available as direct NWP output or as a result of CMV forecasts. Post-processing can 
be applied to derive these quantities. To that aim, statistical or machine learning methods are 
typically employed, but empirical or physical models are also frequently used to derive the 
desired quantity from the direct output of the forecasting model.  

Although GHI has become a standard output of most NWP models, this was not the case when 
the field of solar forecasting started to emerge. For example, Perez et al. (2007) proposed an 
empirical solar radiation forecast model relating sky-cover predictions from the National Digital 
Forecast Database to the clear-sky index to derive GHI forecasts. 

The irradiance components (DHI and DNI) are still not provided as direct output from many 
irradiance forecasting systems. To derive them from GHI forecasts, several empirical diffuse or 
direct fraction models can be used, many of which were originally developed for application to 
measurements or satellite data. These models are also being used in DNI forecasting systems that 
are based on a GHI forecast (e.g., Schroedter-Homscheidt, Benedetti, and Killius 2016). For 
DNI forecasts, several physical post-processing approaches have also been proposed, 
specifically for better consideration of aerosols. Breitkreuz et al. (2009) proposed a forecasting 
approach for direct and diffuse irradiance based on the combination of a chemistry transport 
model and an NWP model in which forecasts of AOD are directly collected from the chemistry 
transport model outputs. Similarly, Gueymard and Jimenez (2018) used WRF-Solar with hourly 
inputs of aerosol forecasts from NASA’s Goddard Earth Observing System Model 5 (GEOS-5) 
atmospheric analysis model. Such aerosol forecasts, together with 

Ezekiel Enterprises, LLC

Forecasting Solar Radiation and Photovoltaic Power 21



other remote sensing data (ground albedo and ozone) and NWP parameters (water vapor and 
clouds), are used as input to radiation transfer calculations to derive the irradiance forecasts. A 
similar approach was used by Lara-Fanego et al. (2012) to derive DNI from WRF output using 
aerosol observations from the Moderate Resolution Imaging Spectroradiometer (MODIS) 
onboard the Terra satellite. 

In the context of PV applications, deriving GTI (or plane-of-array [POA]) forecasts is also of 
interest (see Section 4.1.1). 

4 PV Power Forecasting and Regional Upscaling 
PV power forecasts for a given location or region are important for plant operators, grid 
operators, and the marketing of produced energy. They are derived from irradiance predictions 
with physics-based or statistical methods or a combination of both (see Figure 5). The 
exceptions are time-series approaches for very short-term forecast horizons that are solely based 
on PV power measurements.  

Figure 5. Overview of basic modeling steps in PV power prediction.  
Irradiance prediction: Different forecasting models for different forecast horizons (e.g., cloud-

motion sky imager and satellite data, NWP) and combination with statistical learning approaches 
for optimized site-specific predictions. 

PV power prediction: Conversion of irradiance to PV power with parametric PV simulation models 
and/or statistical learning approaches; regional PV power prediction requires upscaling as a last 

step. Image reproduced from Lorenz (2018) 
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Physics-based parametric modeling involves transposing GHI to GTI (POA) irradiance (Section 
4.1.1) and then applying a PV simulation model (Section 4.1.2). For this, information on the 
characteristics of the PV system configuration is required in addition to the meteorological input 
data; this includes information on nominal power, tilt, and orientation of a PV system as well as 
characterization of the module efficiency as a function of irradiance and temperature. 
Alternatively, the relationship between PV power output and irradiance forecasts and other input 
variables can be directly established with statistical or machine learning on the basis of historical 
data sets including measured PV power. In practice, the approaches are often combined, and 
statistical post-processing using measured PV power data is applied to improve predictions with 
parametric simulation models (Section 4.1.3). PV power prediction for grid operators requires 
forecasts of the aggregated PV power generation for a specified area (i.e., regional forecasts 
instead of single-site forecasts). These regional predictions are typically obtained by upscaling 
methods (see Section 4.2). 

4.1 Simulation of PV Power Plant Production 
The simplest way to forecast the production of a PV power plant is to apply a PV power 
simulation model to the forecast of the relevant predicting variables (primarily irradiance, but 
also environmental temperature and wind speed). Physics-based models explicitly require 
specific inputs. ANNs or other machine learning models might be more flexible and benefit from 
a more extensive set of input variables. 

4.1.1 Estimating Plane-of-Array or PV Power from Irradiance Forecast 
Because empirical PV simulation models use irradiance or the POA as key inputs, the 
transposition of GHI into GTI to obtain the POA irradiance is the first modeling step. For 
example, the PV power forecasting approaches presented by Lorenz et al. (2011) and Pelland, 
Galanis, and Kallos (2013) involve empirical models to derive the POA irradiance as input for 
PV simulation models. Unless DNI and DHI are explicitly provided by the forecast model, this 
first step requires splitting GHI into its direct and diffuse irradiance components. For that 
purpose, many empirical diffuse or direct fraction models that were originally developed for 
application to measurements or satellite data can be used (see also Section 4.2). Gueymard and 
Ruiz-Arias (2015) and Aler et al. (2017) presented an unprecedented worldwide evaluation of 
140 of these separation models proposed during the last 60 years. 

Next, the direct and diffuse components are projected or “transposed” to the POA. The 
transposition of the direct irradiance is straightforward, subject only to geometric considerations. 
The transposition of the diffuse irradiance requires, again, an empirical model for the directional 
distribution of radiance over the sky, describing anisotropic effects such as horizon brightening 
and circumsolar irradiance (Perez et al. 1987; Gueymard 1987; Hay 1979). Validation studies of 
these transposition models are provided by Behr (1997); David, Lauret, and Boland (2013); 
Gueymard (2009); Ineichen (2011); and Kambezidis et al. (1994). The validation of combined 
separation and transposition models has been undertaken by Gueymard (2009); Orehounig, 
Dervishi, and Mahdavi (2014); Lave et al. (2015); and Yang 
(2016). 
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4.1.2 PV Power Simulation 
In the next step, the POA irradiance is converted to PV output power. Most simple PV 
simulation models use only the global tilted irradiance on the POA as input and scale it with the 
PV module array area and efficiency: 

𝑃𝑃𝑃𝑃𝑉𝑉  [𝑘𝑘𝑊𝑊] = 𝐼𝐼𝑃𝑃𝑃𝑃𝐴𝐴 �
𝑘𝑘𝑊𝑊
𝑡𝑡2� ∗ 𝐴𝐴𝑃𝑃𝑉𝑉[𝑡𝑡2] ∗ 𝜂𝜂𝑚𝑚𝑚𝑚𝑚𝑚[%]

100
∗ 𝑆𝑆𝐿𝐿𝑆𝑆𝑝𝑝𝑝𝑝 (1) 

with: 

• 𝐼𝐼𝑃𝑃𝑃𝑃𝐴𝐴 �
𝑘𝑘𝑊𝑊
𝑡𝑡2�, irradiance on the module’s POA 

• 𝐴𝐴𝑃𝑃𝑉𝑉[𝑡𝑡2], the PV array module area
• 𝜂𝜂𝑡𝑡𝑆𝑆𝑚𝑚[%], the efficiency of the PV modules
• 𝑆𝑆𝐿𝐿𝑆𝑆𝑝𝑝𝑝𝑝, a factor accounting for additional deviations (e.g., deviations that are due

to electrical, optical, or thermal losses).
State-of-the-art PV simulation models consider additional influencing factors. Because of optical 
losses on the module surface, the effective irradiance is lower than the incoming POA irradiance 
(e.g., Martin and Ruiz 2001). The DC module efficiency depends on the POA irradiance and 
decreases with increasing temperature. It is secondarily also affected by wind speed and direction 
(e.g., Beyer et al. 2004). The spectral distribution of irradiance is another influencing factor. 
Moreover, the conversion efficiency of DC-to-AC inverters is not constant and should be also 
modeled (e.g., Schmidt and Sauer 1996). 

A deeper insight into the modeling of PV power and corresponding variables can be achieved 
with the tools provided by pvlib, a software package for modeling PV systems (Andrews et al. 
2014). The choice of input parameters is an issue for using such a model. A natural approach is 
to use the metadata available for the PV system (e.g., module and inverter specifications, 
orientation, and peak power); however, this information is frequently missing or erroneous, 
especially for smaller PV systems. An alternative is learning the parameters from historical data. 
Here, it is emphasized that measurement issues, plant outages, or shading can impact the 
estimation of these parameters. Failures of technical components are likely to have large impacts, 
but the same is true with grid codes, consumption, and curtailments, which are caused by grid 
operation or electricity market price. To overcome these issues, a robust training method has 
been proposed by Saint-Drenan et al. (2015). 

4.1.3 Statistical and Machine Learning Methods for PV Power Forecasting Based on 
PV Power or Irradiance Measurements 

When PV power measurements are available, the output of a forecast derived with PV power 
simulation is often adapted to PV power measurements with statistical or machine learning 
methods to improve the predictions (e.g., Kühnert 2015). When aiming to fit a time series 
of measured PV power plant feed-in, one needs to account for external effects reducing the 
production, as described in Section 4.2.  

Recently, the direct simulation of PV power with statistical or machine learning models (see 
Section 3.1) has also gained popularity. This forecasting technique is based on historical data, 
either by means of a statistical analysis of the different input variables (e.g., autoregressive 
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moving average or autoregressive integrated moving average) or by using machine learning 
algorithms that can also handle nonlinear and nonstationary data patterns (Das, Tey and 
Seydmahmoudia 2018; Ulbricht 2013). 

4.2 Estimation and Forecasting of Regional PV Power Feed-In 
A very large number of PV systems contribute to the overall PV power generation in a control 
area or a country. TSOs and utilities require forecasts and estimates of this overall PV power 
(e.g., as a basis for energy trading).  

For many small PV systems, which contribute a large share of the overall feed-in, PV power is 
not measured with sufficient resolution (e.g., 15-minute or hourly) in many countries; only 
annual energy totals are available. Consequently, the actual overall PV power feed-in must be 
estimated using other available data. These estimates of regionally aggregated PV power are 
important as a starting point for the shortest-term forecasting in real time and as a reference for 
the statistical training of regional forecasts as well as for evaluations. 

Regional PV power feed-in can be estimated using the following data: 

• Measurements of the output of PV plants
• Meteorological data (irradiance and temperature)
• Information on the fleet of PV system: coordinates and installed capacity (along with tilt

and orientation if available).
An approach frequently applied for both the estimation and the forecasting of regional PV power 
feed-in is upscaling from a representative set of PV systems in combination with information on 
the PV fleet. Another approach combines meteorological information (e.g., real-time irradiance 
from satellite data or irradiance forecasts) with PV simulation using information of the 
characteristics of the PV fleet. This information is available at different levels in various 
countries but remains difficult to obtain on a regular basis. Killinger et al. (2018) addressed this 
issue by collecting the data and applying the method at several thousands of PV system 
characteristics. As a first step, this approach does not rely on PV measurements, but in practice 
some-post processing is often applied.  

With respect to forecasting of regional PV power, there are additional options. In principle, 
it would be possible to predict the PV power output for each PV plant in a region (even if PV 
power measurements were unavailable), and subsequently aggregating the predictions for 
the whole area (i.e., a “bottom-up” or accumulation approach). This method, however, is 
characterized by a high computational burden and requires a detailed knowledge of every plant 
in the area; therefore, it is difficult to achieve, especially for large areas. Nonetheless, two 
examples of PV-system-based forecasts have been published (Vaz et al. 2016; Carillo et al. 
2020).  

Finally, if an estimated time series of regional PV power time series is given, forecast providers 
can also train their models directly to this PV power time series without requiring detailed 
information of the PV fleet (i.e., a “models input average” approach). 

These approaches are introduced in sections 4.2.1, 4.2.2, and 4.2.3. 
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4.2.1 Upscaling Based on Representative PV Systems  
One option for upscaling is to rescale the output of the reference plants to the overall installed 
capacity in a given region (Lorenz et al. 2011; Kühnert 2015). This approach exploits the strong 
correlation of the power output of nearby PV systems and allows for the estimation and the 
prediction of PV power with good accuracy given a sufficient number of reference plants and 
given that the representative set reflects the basic properties of the total data set (Kühnert 2015; 
Saint-Drenan et al. 2016). Representation of the spatial distribution of the nominal power and of 
the PV systems’ tilt and orientation is most important in this approach. In operational PV power 
prediction systems based on this approach, the upscaling is typically performed for small 
subregions (e.g., down to postal codes) and potentially also for different classes of PV system 
size in a first step. Then, the estimates for the different subregions and classes are aggregated to 
the region of interest. 

Another approach for upscaling based on representative PV systems uses spatial interpolation 
methods. Starting with a set of reference power plants, one can interpolate the (measured or 
predicted) power to any other power plant, assuming that at least the exact coordinates of 
reference as well as target locations are known. Geosciences offer several methods to conduct 
that task; see the review by Li and Heap (2014). The most popular of these methods are the 
simple but robust inverse distance weighting (IDW), and some authors apply the more complex 
kriging method, at least to interpolate irradiation data (Jamaly and Kleissl 2017; Yang et al. 
2013). Because irradiance is the most important variable for PV power production, methods are 
likely to apply to both measured and predicted power. 

One key difference of the two mentioned methods is the feature of convexity: the IDW method is 
convex and therefore generates interpolated values only in the range from the min to the max 
input values; on the other hand, kriging is a nonconvex method that can produce results outside 
the range of input measurements. Considering the aim to estimate many local PV power 
production values based on a set of measurements from different locations, it seems reasonable 
to rely on a set of references that is as large as possible when using the IDW method. 

Because this robust method is one of the most commonly implemented methods, as exemplified 
by Saint-Drenan (2011) and Bright et al. (2018), it is briefly described here. The PV power, Pj, 
for power plant, j, is the weighted sum of n surrounding power plants, i, where the weights, wij, 
are calculated based on the inverse of distance, d, between j and i, so that the sum of all weights 
equals one. The exponent, u, is typically optimized and found to be approximately 1.7–2.0. 

𝑃𝑃𝑗𝑗(𝑑𝑑) = � 𝑤𝑤𝐴𝐴𝑗𝑗 𝑃𝑃𝐴𝐴(𝑑𝑑)
𝑆𝑆

𝐴𝐴=1
 (2) 

𝑤𝑤𝐴𝐴𝑗𝑗 = 𝑚𝑚(𝐴𝐴,𝑗𝑗)−𝑢𝑢

∑ 𝑚𝑚(𝑘𝑘,𝑗𝑗)−𝑢𝑢𝑛𝑛
𝑘𝑘=1

,𝑡𝑡 > 0 (3) 

The targets, j, can alternatively be seen as the center of all installed capacity of an area of interest; 
however, assuming similar characteristics (e.g., orientation angles) between references and targets 
is needed for this. Improvements have been observed by accounting for known orientations (e.g., 
Killinger et al. 2016). Last, an important step is the aggregation of all relevant targets (power plants 
or areas) for a region of interest. When it comes to unknown or dynamically changing electric grid 
connections, a new source of uncertainty becomes important. An extensive investigation of more 
general uncertainties can be found in Saint-Drenan et al. (2016). 
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4.2.2 Regional Model Based on Statistical Analysis of the Fleet of PV Systems 
As mentioned, simulating each single plant installed in a region is not realistic because of the 
very high computational costs. As shown by Saint-Drenan, Good, and Braun (2017), a realistic 
alternative is to group all plants with similar characteristics (i.e., orientation angles) and simulate 
this limited number of groups. It can easily be shown that this computational technique allows 
for speeding up the calculation without losing information, making this approach viable. This 
type of implementation requires determining the share of each group of plants—in other words, 
the share of installed capacity for each class of orientation must be assessed. Several approaches 
can be followed to obtain this information.  

The first approach, which is described by Saint-Drenan et al. (2017), involves conducting a 
statistical analysis on a subset of the installed PV plants (see Figure 6). The risk here is that the 
selected samples are not representative of the actual PV system. To address this issue, it is 
possible to train the distribution of the different classes of PV plants; this option was 
demonstrated by Saint-Drenan et al. (2019), where a Bayesian approach was used to regularize 
the training approach. This statistical approach has also been employed in the Copernicus 
Climate Change Service to generate regional PV power for each region in Europe using the 
ERA5 reanalysis data set. As described by Saint-Drenan et al. (2018), the parameters of the 
statistical regional model have been derived from the optimal tilt angle, allowing this model to be 
implemented anywhere in Europe without the need for a training data set. A comparison of the 
model output with the European Network of TSOs for Electricity data showed that this approach 
is well accepted. Note that estimates of the regional power production for each European Union 
country is calculated operationally each month with this method. The data can be found on the 
Copernicus Data Store. 

Figure 6. Distribution of the tilt angle of German PV systems for different classes of peak power. 
Image from Saint-Drenan et al. (2017) 
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4.2.3 Forecasting Regional PV Power Based on Averaged Model Inputs 
The direct approach, called “model inputs average,” is based on the spatial smoothing of the 
input features. In this case, the PV power generation of the area is considered to be a virtual 
power plant, and prediction is made directly at the regional level by using a historical data set of 
regional PV power (measured or estimated) and input meteorological forecasts aggregated at a 
smaller spatial scale than the region of interest. The main advantage of this approach is the 
possibility of obtaining a reliable power forecast without additional details about the installations 
beyond the total installed capacity of the whole area. The relationship between meteorological 
forecasts and PV power time series is typically established with machine learning approaches. 
An overview of the relationship is given by Betti et al. (2020). A prerequisite of this approach is 
the availability of a time series of actual PV power feed-in, which can be estimated by the 
upscaling models described in Section 4.2.1. In many countries, estimates of the regional PV 
power feed-in are published, for example, by grid operators, and they are available to forecast 
data providers as a basis for training. 

5 Evaluation of Irradiance and PV Power Forecasts 
The evaluation of solar irradiance forecasts provides users with the necessary information about 
forecast accuracy and helps them choose different forecasting products or assess the risk when 
using a particular forecast as a basis for decisions. An extensive overview of forecast verification 
methods was given by Jolliffe and Stephenson (2011). This section addresses the evaluation of 
deterministic irradiance forecasts that provides an overall indication of the uncertainty of a 
specific forecast model. Probabilistic solar forecasts assigning uncertainty estimates to each 
individual forecast value are described in Section 6. 

The quality of forecasts is evaluated by assessing their similarity to reference data. Most often, 
irradiance measurements are used as reference data, which are commonly referred to as ground 
truth data. Nevertheless, reference data are always affected by a certain degree of uncertainty. 
Alternatively, satellite-retrieved irradiance values or the output of a detailed physical model 
might serve as a reference. 

The choice of appropriate metrics and concepts for the evaluation of solar irradiance and power 
forecasts is the subject of ongoing discussions within the solar forecasting community; see, e.g., 
Hoff et al. (2012a) and Marquez and Coimbra (2013). Recently, Yang et al. (2020) proposed 
applying the well-established Murphy-Winkler framework for distribution-oriented forecast 
verification as a standard practice to analyze and compare solar forecasts. 

Here, the most standard evaluation methods are outlined, including (1) statistical error measures 
(Section 5.1.1); (2) comparison to reference models using the skill score parameter (Section 
5.1.2); and (3) other important considerations, such as the representation of the observed 
frequency distribution and the forecast “goodness” as a function of solar position, hour of the 
day, cloud variability, or even spatiotemporal averaging (Sections 5.2–5.4). These concepts are 
introduced using examples from an observational data set of hourly pyranometer measurements 
from 18 weather stations of the German Weather Service from March 2013 to February 2014 
(Lorenz et al. 2016) and fo
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• High-resolution deterministic global IFS model, operated at the ECMWF, with spatial
resolution of 0.125°, 3-hourly outputs, and forecast horizon of 24 hours issued every day
at 00:00 UTC

• High-resolution regional HIRLAM SKA model, operated at the Danish Meteorological
Institute, with spatial resolution of 3 km, hourly outputs, and forecast horizons from 4–9
hours ahead, issued daily at 00:00 UTC, 06:00 UTC, 12:00 UTC, and 18:00 UTC.

In addition, Section 5.5 addresses the evaluation of regional PV power forecasts in a case study 
in Italy. Finally, Section 5.6 introduces the concept of “firm power forecasts” as an effective 
model validation metric to account for the economic value of solar forecasts. 

5.1 Error Measures  
Statistical error measures and skill scores are applied for quantitative forecast evaluation. 

5.1.1 Statistical Error Measures 
Here, the most commonly used error measures based on first-order statistics are presented. The 
error of a single measurement is given as:  

εi =Ipred,i−Imeas,i , (4) 

where Ipred,i denotes a predicted irradiance value (GHI or DNI), and Imeas,i is the corresponding 
measured value.  

To evaluate the forecast accuracy of the solar power predictions, the root mean square error 
(RMSE) is commonly used:  

RMSE = 1
√𝐷𝐷
�∑ 𝜀𝜀𝐴𝐴2𝐷𝐷

𝐴𝐴=1  (5) 

where N is the number of data pairs. The mean square error, MSE = RMSE2, is also commonly 
used. Typically, only daytime values are considered for the evaluation. Relative errors for the 
irradiance forecast are generally derived by normalization with respect to mean measured 
irradiance of a given time interval. In contrast, relative errors of PV power forecasts for utility 
applications are often normalized to the installed power rather than the mean measured value 
(e.g., Lorenz et al. 2011). 

The RMSE can be split into two components: systematic (1) or bias error and (2) stochastic error 
or standard deviation. The bias is the difference between the mean of the predicted and measured 
values (systematic error): 

∑
=
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N

i
iN

bias
1

1 εε (6) 

A positive bias means the predicted values exceed the measurements on average. 
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The standard deviation of the errors, stderr, is defined as: 

∑
=

−==
N

i
iN

stderr
1

2)(1)( εεεσ (7) 

The stderr provides information on the spread of the errors around their mean value and might be 
further decomposed into one part related to the error amplitude [σ(Ipred) – σ(Imeas)] and another 
part related to the correlation coefficient, r, of the time series, which is defined as: 
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Overall, the complete decomposition of RMSE yields: 

RMSE2 = bias2 + (σ(Ipred) – σ(Imeas))2 + 2σ(Imeas) σ(Ipred) (1 – r) (9a) 

or, equivalently, and more simply: 

RMSE2 = bias2 + stderr2. (9b) 

Another common measure to assess forecast accuracy is the mean absolute error (MAE): 

1

1MAE | |
N

i
iN

ε
=

= ∑ (10) 

which is recommended by Hoff et al. (2012a) as a preferred measure, in particular for reporting 
relative errors. 

From a user’s point of view, the choice of the most suitable error measure will be based on the 
impact of forecast errors on their application. MAE is appropriate for applications with linear 
cost functions (i.e., when the costs caused by inaccurate forecast are proportional to the forecast 
error). The RMSE is more sensitive to large forecast errors and hence suitable when small errors 
are more tolerable and larger errors cause disproportionately high costs, which is the case for 
many applications in the energy market and for grid management issues.  

In addition to the computation of these error measures, at least some basic visual analysis is 
strongly recommended. A direct comparison of measurements and forecasts in scatter plots or 
2D histograms and time series is helpful to develop a better understanding of forecast 
performance. 

5.1.2 Skill Score and Persistence Forecast Model 
Skill score (also referred to as forecast skill) is used to quantify the forecast performance relative 
to a reference model. The RMSE is normally used for this comparison; other scores such as 
MAE or MSE are also often used. The skill score is defined as the difference between the score 
of the reference model and the forecast model divided by the difference between the score of the 
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reference model and a perfect model; note that a perfect model yields zero RMSE. For RMSE, 
the skill score, ssRMSE, is calculated as: 

ssRMSE = RMSEref −RMSE
RMSEref

, (11) 

where RMSEref refers to the reference model, and RMSE refers to the investigated forecasting 
algorithm (Coimbra and Pedro 2013a). The skill score’s value of 1 hence indicates a perfect 
forecast, and a skill score of 0 means that the investigated algorithm has the same RMSE as the 
reference forecast. A negative value indicates performance that is worse than the reference. Skill 
scores might be applied for comparisons to a simple reference model and also for 
intercomparisons of different forecasting approaches (i.e., improvement scores). 

In solar radiation forecasting, persistence is the simplest and most widely used forecast reference 
model. The persistence model is a trivial model that assumes that the current situation does not 
change during the forecasted lead time. Several definitions of persistence exist, including simple 
persistence; scaled persistence, which accounts for solar geometry changes; and more-advanced 
concepts, such as smart persistence. The most widely used definitions are presented next. 

For day-ahead forecasts, the simplest approach is to assume that irradiance, I (GHI or DNI), 
persists during a period of 24 hours, that is: 

𝐼𝐼per,24h(𝑑𝑑) = 𝐼𝐼meas(𝑑𝑑 − 24h). (12) 

A more elaborate option for GHI, which produces higher accuracy forecasts, is to separate 
the clear and cloudy contributions to solar radiation and assume that only the cloudy component 
(i.e., the random component of GHI) persists during the forecast lead time. The clear component 
is strongly influenced by the deterministic solar geometry and can be described with reasonable 
accuracy using a clear-sky radiation model. In such a modeling approach, the persisting 
magnitude is the clear-sky index, Kc, calculated from the measured GHI. For forecast horizons of 
several hours (∆t) ahead, persistence GHIper,∆t for time t is then defined as: 

GHIper Kc,∆t(𝑑𝑑) = GHIclear(𝑑𝑑) 𝐾𝐾𝑆𝑆(𝑑𝑑 − ∆𝑑𝑑). (13) 

For DNI, a similar approach can be used based on the beam clear-sky index or the Linke 
turbidity factor (Kuhn et al. 2017b).  

In the context of the IEA Task 46 (IEA 2015), the so-called “smart persistence” has been 
proposed. It consists of increasing the integration time that defines the current conditions 
commensurately to the forecast time horizon ∆t: 

𝐺𝐺𝑅𝑅𝐼𝐼𝑡𝑡𝑡𝑡𝐴𝐴 𝑝𝑝𝑡𝑡𝑡𝑡𝐴𝐴𝑡𝑡,∆𝑡𝑡(t) =  𝐺𝐺𝑅𝑅𝐼𝐼𝑆𝑆𝑚𝑚𝑡𝑡𝑡𝑡𝐴𝐴(t) 1
∆𝑡𝑡 ∫ 𝐾𝐾𝑆𝑆(𝑑𝑑′)𝑊𝑊𝑑𝑑′𝑡𝑡−∆𝑡𝑡

𝑡𝑡−2∗∆𝑡𝑡   (14)
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Or, for measurements available in discrete time interval ∆𝑑𝑑𝑡𝑡𝑡𝑡𝑡𝑡𝑝𝑝 : 

𝐺𝐺𝑅𝑅𝐼𝐼𝑡𝑡𝑡𝑡𝐴𝐴 𝑝𝑝𝑡𝑡𝑡𝑡𝐴𝐴𝑡𝑡,∆𝑡𝑡(t) =  𝐺𝐺𝑅𝑅𝐼𝐼𝑆𝑆𝑚𝑚𝑡𝑡𝑡𝑡𝐴𝐴(t) 1
𝐷𝐷
∑ 𝐾𝐾𝑆𝑆(𝑑𝑑 − ∆𝑑𝑑 �1 + 𝐴𝐴

𝐷𝐷
�),𝐷𝐷

𝐴𝐴=1   (15) 

with 𝑁𝑁 =  ∆𝑡𝑡
∆𝑡𝑡𝑚𝑚𝑛𝑛𝑚𝑚𝑚𝑚

. 

Another less-used reference model is based on climatological mean values. Alternatively, 
combinations of climatology and persistence can be applied as a reference, as recommended by 
Yang et al. (2020). Further discussion on forecast benchmarking using the skill score and clear-
sky persistence is provided by Yang (2019b). 

Figure 7. Clear-sky index (here noted as kt*) forecast error as a function of (left) cosine of solar 
zenith angle and (right) hour of the day for the forecasts issued by the IFS and SKA NWP models 

(blue and red lines, respectively). Solid lines show RMSE, and dashed lines show mean bias error. 
The evaluated period is from March 1, 2013–February 28, 2014. 

5.2 Analysis of Forecast Error with Respect to Solar Elevation 
A special feature of solar irradiance is its very strong deterministic component, which results 
from the daily and seasonal course of the sun. This deterministic signal strongly influences the 
forecast error signal. Hence, to investigate the solar irradiance forecast errors, it is sometimes 
advisable to evaluate only the nondeterministic part of solar radiation, which is primarily caused 
by errors in the representation of clouds. To this aim, the analyzed variable is often the clear-sky 
index forecast error instead of GHI forecast errors.  

Figure 7 shows the RMSE and bias of the clear-sky index, Kc, as a function of the cosine of the 
solar zenith angle (Figure 7, left) and the time of day (Figure 7, right) for two different NWP 
model forecasts (IFS and SKA). The two models show similar behavior: RMSE increases with 
low SZA or, equivalently, during morning and evening hours, as is also the case with the 
magnitude of bias. This error pattern is very often caused by deficient modeling of the 
atmospheric transport of radiation for low solar altitudes. This limitation is a well-known flaw of 
the two-stream schemes used in most NWP models. Other model limitations also exist, such as 
3D effects and atmospheric refraction issues whose impact is enhanced for low solar altitudes. 
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Figure 8. RMSE of various versions of the SKA forecasts as a function of the standard deviation 
of measurement-based clear-sky index (here noted as kt*) (red) SKA.  

Dark blue: Nearest grid point, SKA20 x 20 averaged throughout 20 by 20 grid points. 
Light blue: SKAav 5-hour sliding mean of the clear-sky index of the forecasts of the average 

throughout 20 by 20 grid points. Green: SKAav, LR.kt*: linear regression of the clear-sky index of 
the forecasts applied to SKAav. The evaluated period is from April 3, 2013–February 28, 2014. 

Training set: Last 30 days, all 18 DWD sites 

5.3 Analysis of Forecast Error with Respect to Cloud Variability and 
Spatiotemporal Averaging 

Forecasts generally show good agreement with measurements for clear-sky periods or even 
completely overcast days, which basically have a quasi-constant clear-sky index; however, cloud 
variability strongly impacts solar forecasting accuracy. Hence, considerable deviations from the 
measurements are typically observed for days with variable cloudiness. An evaluation of the 
SKA forecast errors as a function of the measurement-derived Kc variability, here represented by 
the standard deviation of Kc throughout 5 hours, is shown in Figure 8. The evaluation also shows 
this dependence for multiple spatial and temporal averaging configurations of the SKA 
forecasts. Overall, Figure 8 shows: 

1. The forecast error increases with enhanced cloud variability.
2. Spatial and temporal forecast averages result in reduced RMSE values, going from

negligible reductions for very stable conditions to large reductions for highly
variable conditions.

Regarding the first point, the solar radiation forecast error shows a clear dependency with respect 
to cloud variability and, more generally, with respect to the cloud conditions. Combining the 
error trend in the dependence of cloud conditions and the solar elevation has been proposed as an 
efficient method to reduce the systematic error in NWP model forecasts using a post-processing 
MOS. In particular, Lorenz et al. (2009) used a polynomial function with cos(SZA) and Kc as 
independent variables to parameterize the forecast bias error from historical forecasts relative to 
observations and ultimately to subtract the parameterized error from operational forecasts. This 
approach has also been adapted and evaluated for other NWP models and different climates. 
Mathiesen and Kleissl (2011) found improved accuracies when applying that approach to three 

Ezekiel Enterprises, LLC

Forecasting Solar Radiation and Photovoltaic Power 33



different NWP models—GFS, North American Model, and IFS—for stations in the continental 
United States. Pelland, Galanis, and Kallos (2013) did the same for the Canadian GEM model, 
and Müller and Remund (2010) for the WRF model forecasts in Switzerland. 

Regarding the second point, the rationale of the RMSE decreases when an averaging scheme is 
applied, and this is explained by the existence of small correlations among the pixels over which 
the averaging scheme is applied. This leads to random error cancellations during the averaging 
process. In contrast, for stable conditions, when the correlation among neighboring pixels is very 
high, the cancellation of random errors is small. 

The optimal region size and time interval for RMSE reduction using averaging depends on the 
correlation structure among neighboring forecasts, both in time and space. Multiple studies have 
been conducted on this topic. For instance, a detailed evaluation of irradiance forecasts from the 
Canadian GEM model resulted in a reduction of forecast errors in the range from 10% to 15% 
when the model outputs were averaged throughout several hundred kilometers (Pelland, Galanis, 
and Kallos 2013). A similar improvement was achieved with WRF forecasts provided by 
Meteotest using averages over an area of 50 km by 50 km (Müller and Remund 2010). In 
parallel, Mathiesen and Kleissl (2011) reported an averaging area of 100 km by 100 km as 
suitable for irradiance forecasts using the GFS and North American Mesoscale forecast system 
models. The benefit of horizon-dependent smoothing filters for CMV forecasts was also shown 
by Lorenz, Hammer, and Heinemann (2004) and by Kühnert, Lorenz, and Heineman (2013). 

The reduction of RMSE by spatial and temporal averaging can be extrapolated to the particular 
case in which the forecasting model performance is evaluated throughout multiple sites across a 
wide region (also referred to as regional forecast) or for coarser temporal granularities, such as 
monthly or yearly. In these cases, there is a reduction of random errors with respect to point-wise 
evaluations that make regional forecasting more accurate than point-wise forecasting. Again, the 
extent of the reduction depends on the particular correlation levels among the aggregated values 
in each case. An analysis of regional forecast errors for different region sizes and different 
forecast models was given by Lorenz et al. (2009); Kühnert, Lorenz, and Heineman (2013); and 
Lorenz and Heinemann (2012). 

Temporal and spatial averaging can be also considered for ASI-based forecasts. It has been 
found that in a nowcasting system with four sky imagers during days with many transient clouds, 
the DNI RMSE for forecasts that are 10 minutes ahead is reduced from 13.0% to 6.5% using 
averages of 4 km2 and 15 minutes with respect to pixel-wise forecasts (Kuhn et al. 2017c). 

Despite the positive impact of spatiotemporal averaging on reducing the RMSE of a forecast, 
there is a negative effect that adversely impacts the frequency distribution of forecasted data 
because averaging reduces extreme forecasted values and distorts the original frequency 
distribution of the forecast data. Consequently, forecast averages should be used only when the 
forecast frequency distribution is not critical. 

5.4 Analysis of the Frequency Distributions of Forecasted Values 
The ability of a model to reproduce the observed frequency distribution of both solar irradiance 
and clear-sky index is a required property for some applications. In addition, it can provide 
insights about potential problems in the forecast model. 
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Figure 9 shows the probability density function (PDF) of the clear-sky index, Kc, for forecasts 
issued by the SKA and IFS NWP models, as in Figure 7, and the actual PDF obtained from 
observations. These plots show that the SKA model systematically overpredicts clear-sky 
situations and underpredicts overcast conditions. Consequently, intermediate situations are 
underrepresented. On the other hand, the IFS model underrepresents very clear and very cloudy 
conditions and overrepresents intermediate situations. Although this gives insightful information 
about the forecast performance, the similarity of the distribution functions of measurements and 
forecasts does not guarantee an accurate forecast because it does not include information 
regarding the correct timing of the modeled events.  

Figure 9. PDF of the clear-sky index (here noted as kt*) derived from measurements (gray), SKA 
model forecasts (red), and IFS model forecasts (blue). The evaluated period is from March 1, 

2013–February 28, 2014; cos(SZA) > 0.1. 

A quantitative evaluation of the agreement between the observed and forecasted distribution 
functions can be done using the Kolmogorov-Smirnov integral (Espinar et al. 2008; Gueymard 
2014), which is usually applied to distribution functions of GHI or DNI rather than to Kc (Beyer 
et al. 2009; Perez and Hoff 2013). 

5.5 Analysis of Regional Forecasts 
Regionally aggregated forecasts of PV power, typically derived through upscaling (see Section 
4.2), are required by grid operators. Regional forecasts show much lower uncertainties than 
single-site forecasts. By enlarging the footprint of the forecast region of interest, forecast errors 
are reduced (Hoff and Perez 2012; Lorenz et al. 2009, 2011; Fonseca et al. 2014; David et al. 
2016; Saint-Drenan et al. 2016). This phenomenon, which is called the smoothing effect, is 
related to the correlation between the forecast errors at different locations. The larger the region, 
the more locations with different irradiance variability are included, and thus solar forecast errors 
of the different sites are less correlated. This subsequently leads to a higher accuracy of the 
regional PV power forecasts.  

An example is shown in Figure 10, which depicts the day-ahead forecast accuracy that can be 
reached in Italy by predicting the PV generation of different control areas: The adopted model 
corresponds to an upscaling method using averaged model inputs and forecasting the power 
generation at market zone level directly (Betti et al. 2020). 

Ezekiel Enterprises, LLC

Forecasting Solar Radiation and Photovoltaic Power 35



(16) 

In addition, a measure of PV power variability is displayed in Figure 10. With 𝑃𝑃 (𝑑𝑑 ) 
denoting the PV power output at time t, the change in PV power for a given time step, ∆𝑑𝑑 , is 
defined as: 

         ∆ ∆𝑡𝑡  = 𝑃𝑃 (𝑑𝑑 ) − 𝑃𝑃 (𝑑𝑑  − ∆𝑑𝑑 ).  

Hourly values and a time step ∆𝑑𝑑  of 24 hours are specifically considered in Figure 10. 

Figure 10. Smoothing effect over Italy: RMSE of regional forecasts (circles) and persistence 
(triangles) as a function of the area size for the market zones in Italy (full circles/triangles) and for 

areas merging several adjacent market zones (empty circles/triangles). 

PV power variability in each zone is defined as the standard deviation, 𝜎𝜎(∆𝑃𝑃∆𝑡𝑡), as proposed by 
Perez et al. (2016), which is equivalent to the RMSE of the persistence of PV power (see also 
equations 8.5 and 8.12) 

 𝑅𝑅𝑀𝑀𝑆𝑆𝐸𝐸𝑡𝑡𝑡𝑡𝐴𝐴 =  1
√𝐷𝐷
�∑ (∆𝑃𝑃∆𝑡𝑡)2𝐷𝐷

𝐴𝐴=1 =  𝜎𝜎(∆𝑃𝑃∆𝑡𝑡).  (17) 

Here, it is commonly assumed that the average of ∆𝑃𝑃∆𝑡𝑡 should be zero. 

Both the variability and the forecast errors decrease with an increase in the size of the region and 
the number of PV systems considered. They can be well fitted either by a hyperbolic function, 
similar to one proposed by Perez et al. (2016), or by an exponential function, similar to the one 
proposed by Lorenz et al. (2009). As shown in Figure 10, by enlarging the footprint of the 
forecast region from the prediction of the PV generation in each market zone in Italy to the 
prediction of the PV generation over all of Italy, the RMSE can decrease from 5.5% (market 
zones average) to 3.6% (countrywide). 

To summarize, expanding the transmission grid to manage the power generation in large areas 
(e.g., entire countries instead of market zones) not only reduces congestion and constraints on 
production capacity but also increases the forecast accuracy, as shown with the Italy example.  
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5.6 Effective Model Validation Benchmarking: Operationally Firm 
Solar Forecasts 

When validating solar forecasts, the classical error metrics (e.g., RMSE and MAE) introduced in 
Section 5.1 are commonly used. With continuous development in technology and changes in the 
energy market, the need arises for new validation measures that account for the economic value 
of solar forecasts. Thus, the firm power forecast (FPF or “perfect forecast”) concept was 
developed and introduced in a recent series of publications by Perez et al. (2019a, 2019b) and 
Pierro et al. (2020a). This forecast is both an effective model validation metric and an 
operational strategy to integrate increasing amounts of variable solar generation on electric grids. 
The costs incurred in transforming imperfect forecasts into firm predictions define the new 
metric: These include the costs of energy storage and output curtailment needed to make up for 
any over- or underprediction situations. It was shown by Perez et al. (2019a, 2019b) and Pierro et 
al. (2020a) that delivering firm predictions (i.e., fully eliminating grid operator renewable 
supply-side uncertainty and, incidentally, the need to characterize forecasts probabilistically) 
could be achieved at a modest operational cost.  

Although other recent publications have focused on standardizing error metrics and forecast 
model validation practice (e.g., Hoff et al. 2012a; Yang et al. 2020), the choice of possible 
references as well as the possible definitions of persistence constitute sources of ambiguity when 
evaluating results from different studies, particularly reports emanating from the industry. In 
addition, the standard metrics, however “standardized,” are not directly exploitable by grid 
operators for estimating operational costs incurred by forecast errors. 

The FPF metric is defined as the optimum (i.e., minimum possible) capital cost of PV plant 
oversizing and storage that is sufficient to make up for all instances of over- and underforecasts. 
This minimum is a function of the assumed capital costs for PV and storage and, of course, of the 
quality of the forecast. This metric bypasses both the ambiguity of standard metrics and their 
exploitability by grid operators because the metric is (1) a tangible hardware cost and (2) an 
indirect measure of operational costs resulting from solar supply-side uncertainty, because 
applying firm forecasts would entirely eliminate the said uncertainty. 

Figure 11 compares the MAE and FPF metrics for GHI forecasts at 1-, 3-, and 24-hour forecast 
horizons. Results stem from the analysis of time series at the seven NOAA Surface Radiation 
Budget Network (SURFRAD) sites for a period of 1 year. The forecast models include smart 
persistence (Section 5.1.2), SUNY (also known as SolarAnywhere; SolarAnywhere 2019), and 
its underlying NWP components: IFS, GFS, National Digital Forecast Database, and the HRRR. 
In this example, the hardware costs quantifying the FPF metric amount to $1,200 per kW for PV 
oversizing and $200 per kWh for storage. 

A noticeable difference between the two metrics is the performance of smart persistence relative 
to the other models, especially for short-term horizons. Persistence turns out to be operationally 
more robust than generally assumed because, whereas its dispersion can be large (i.e., large 
MAE and RMSE), this dispersion tends to be well balanced around the 1:1 diagonal, with fewer 
instances of the prolonged over/underestimations that are operationally costly.  
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Figure 11. Comparison of forecast model performance at 1-, 3-, and 24-hour horizons for all 
SURFRAD stations using (left) the MAE metric and (right) the FPF metric. 

6 Probabilistic Solar Forecasts 
A forecast is inherently uncertain and a proper assessment of its associated uncertainty offers the 
grid operator a more informed decision-making framework. For example, a deterministic 
forecast that includes predictions intervals is of genuine added value and, if appropriately 
incorporated in grid operations, might permit an increase in the value of solar power generation 
(Morales et al. 2014).  

This section is restricted to the univariate context that corresponds to probabilistic forecasts that 
do not consider the spatiotemporal dependencies generated by stochastic processes such as solar 
power generation. Two types of solar probabilistic forecasts are considered here: quantile 
forecasts and ensemble forecasts (i.e., those using the Ensemble Prediction System, or EPS). 
Quantile forecasts are quite versatile probabilistic models and as such might address different 
forecasting time horizons, whereas EPS forecasts generally provide day-ahead probabilistic 
forecasts. Further, a verification framework is considered for evaluating the quality of solar 
probabilistic forecasts. The evaluation framework is based on visual diagnostic tools and a set of 
scores mostly originating from the weather forecast verification community (Wilks 2014). What 
follows provides an overview of the basic concepts related to solar probabilistic forecasting 
methods with an emphasis on the specific associated verification metrics. Comprehensive 
overviews regarding forecasting methods and the verification of solar probabilistic forecasts 
metrics can be found in van der Meer, Widén, and Munkhammar (2018); Antonanzas et al. 
(2016); and Lauret, David, and Pinson (2019).  

6.1 Nature of Probabilistic Forecasts of Continuous Variables 
In contrast to deterministic forecasts, probabilistic forecasts provide additional information about the 
inherent uncertainty embodied in NWP. The probabilistic forecast of a continuous variable, such as 
solar power generation or solar irradiance, takes the form of either a cumulative distribution function 
(CDF), 𝐹𝐹(𝑌𝑌), or a PDF, 𝑆𝑆(𝑌𝑌), of the random variable of interest, 𝑌𝑌 (e.g., GHI).  
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The CDF of a random variable Y is given as: 

        𝐹𝐹(𝑦𝑦) = 𝑃𝑃(𝑌𝑌 ≤ 𝑦𝑦)    (18) 

where 𝑃𝑃(𝑌𝑌 ≤ 𝑦𝑦) represents the probability that this random variable is less or equal to 𝑦𝑦. 

The predictive distribution can be summarized by a set of quantiles. The quantile, 𝑞𝑞𝜏𝜏, at 
probability level 𝜏𝜏 ∈  [0,1] is defined as follows: 

 𝑞𝑞𝜏𝜏 = 𝐹𝐹−1(𝜏𝜏), (19) 

where 𝐹𝐹−1 is the so-called quantile function. A quantile, 𝑞𝑞𝜏𝜏, corresponds to the threshold value 
below which an event, y, materializes with a probability level, τ. 

Prediction intervals (also called interval forecasts) can be inferred from the set of quantiles. 
Prediction intervals define the range of values within which the observation is expected to be 
with a certain probability (i.e., its nominal coverage rate) (Pinson et al. 2007). For example, a 
central prediction interval with a coverage rate of 95% is estimated by using the quantile 
𝑞𝑞 𝜏𝜏 =0.025 as the lower bound and 𝑞𝑞 𝜏𝜏 =0.975 as the upper bound. Figure 12 shows an example 
of the probabilistic forecasts of solar irradiance where prediction intervals have been computed 
for nominal coverage rates ranging from 20% to 80%.  

Figure 12. Example of probabilistic solar irradiance forecasts: two days of measured GHI at Le 
Tampon, France, and associated 1-hour ahead forecasts with prediction intervals (yellow) 

generated with the quantile regression forest model. 

6.2 Quantile Forecasts 
Two approaches are commonly used in the community to generate quantile forecasts (see Figure 
13) addressing different forecast horizons. As input, they use past ground observations and
satellite images for intraday forecasting or NWP deterministic forecasts that are more effective
for day-ahead forecasting. The first approach (Bacher, Madsen, and Nielsen 2009; Pedro et al.
2018) involves directly generating the quantiles of the predictive distribution of the variable of
interest (e.g., GHI, DNI, or PV power). The second approach (Lorenz et al. 2009; David et al.
2016; Grantham, Gel, and Boland 2016; Pierro et al. 2020b) produces the interval forecasts from
the combination of a deterministic (point) forecast and quantiles of the prediction error.
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For both approaches, quantiles can be estimated either by assuming a parametric law for the 
predictive distribution or by nonparametric methods, which make no assumptions about the 
shape of the predictive distribution.  

Figure 13. The two typical workflows used to generate quantile forecasts from recent past 
observations and/or deterministic NWP forecasts 

6.2.1 Parametric Methods 
Parametric models assume that the variable of interest or the prediction error follows a known 
law of distribution (e.g., a doubly truncated Gaussian for GHI or a Gaussian for the error 
distribution). Only a few parameters (e.g., mean and variance) are needed to fully characterize 
the predictive distribution. Consequently, this approach is particularly interesting in an 
operational context because it requires a low computational effort.  

Figure 14. PDF of the normalized error (zero mean and unit variance) of the hourly profile of day-
ahead forecasts of the clear-sky index provided by ECMWF-HRES for three different sky 

conditions and for the site of Saint-Pierre (21.34°S, 55.49°E), Reunion, France, in 2012. The red 
dashed line represents the fitted standard normal PDF. Image from David and Lauret (2018) 
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In the solar forecasting community, it is very common to fit a Gaussian distribution to the errors 
even though errors derived from deterministic forecasts of solar irradiance and of clear-sky index 
do not follow a Gaussian distribution (see Figure 14). For instance, Lorenz et al. (2009) 
developed the first operational PV forecasting model in Germany by assuming a Gaussian 
distribution of the error of the deterministic GHI forecasts generated by the IFS. More precisely, 
the predictive CDF was a Gaussian distribution with a mean corresponding to the point forecast 
and a standard deviation derived from a fourth-degree polynomial function for different classes 
of cloud index and solar elevation. For intrahour and intraday solar irradiance probabilistic 
forecasts, David et al. (2016) assumed a Gaussian error distribution of the deterministic forecast 
to generate a predictive CDF with a Generalized AutoRegressive Conditional Heteroskedasticity 
(GARCH) model. Instead of fitting a parametric PDF to the error distribution, Fatemi et al. 
(2018) proposed a framework for parametric probabilistic forecast of solar irradiance using the 
beta distribution and standard two-sided power distribution. 

6.2.2 Nonparametric Methods 
To avoid making assumptions about the shape of the predictive distribution, numerous 
nonparametric methods have been proposed in the literature (van der Meer, Widén, and 
Munkhammar 2018). Examples are techniques such as bootstrapping (Efron 1979; Grantham, 
Gel, and Boland 2016), kernel density estimation (Parzen 1962), or k-nearest neighbor (Pedro et 
al. 2018). Here, two prominent and simple nonparametric methods are discussed briefly: the 
quantile regression and analog ensemble techniques.  

Quantile regression models relate quantiles of the variable of interest (predictand) to a set 
of explanatory variables (predictors). Statistical or machine learning techniques—such as linear 
quantile regression, quantile regression forest, or gradient boosting (David and Lauret 2018; van 
der Meer, Widén, and Munkhammar 2018)—are commonly used to produce the set of quantiles 
with probability levels spanning the unit interval. 

The following summarizes the linear quantile regression method first proposed by Koenker and 
Bassett (1978). See David, Luis, and Lauret (2018) for details about the implementation of other 
regression methods, including other variants of the linear quantile regression, quantile regression 
forest, quantile regression neural network, or boosting.  

The linear quantile regression technique estimates a set of quantiles of the cumulative 
distribution function, 𝐹𝐹, of some response variable, 𝑌𝑌 (the predictand), by assuming a linear 
relationship between the quantiles of 𝑌𝑌 (𝑞𝑞𝜏𝜏) and a set of explanatory variables, 𝑋𝑋 (the predictors): 

𝑞𝑞𝜏𝜏 = 𝛽𝛽𝜏𝜏𝑋𝑋 + 𝜖𝜖, (20) 

where 𝛽𝛽𝜏𝜏 is a vector of the parameters to be optimized at each probability level, 𝜏𝜏, and 𝜖𝜖 
represents a random error term (Koenker and Bassett 1978).  

Numerous implementations of the linear quantile regression technique (and of its related 
variants) have been proposed in the literature to generate quantile forecasts for different forecast 
horizons and using different types of predictors, 𝑋𝑋. See, e.g., Bacher, Madsen, and Nielsen 
(2009); Zamo et al. (2014); Lauret, David, and Pedro (2017); van der Meer, Widén, and 
Munkhammar 2018; and Bakker et al. (2019).  
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The analog ensemble (AnEn) method (Delle Monache et al. 2013) is a simple nonparametric 
technique used to build the predictive distributions. The aim is to search for similar forecasted 
conditions in the historical data and to create a probability distribution with the corresponding 
observations. Alessandrini et al. (2015) applied an AnEn approach to a set of predicted 
meteorological variables (e.g., GHI, cloud cover, and air temperature) generated by the Regional 
Atmospheric Modeling System (RAMS). Note that the AnEn technique is mostly employed for 
day-ahead forecasts and generates the predictive distribution using NWP deterministic forecasts. 

6.3 Ensemble Prediction System 

6.3.1 Definition  
The EPS corresponds to a perturbed set of forecasts generated by slightly changing the initial 
conditions of the control run and of the modeling of unresolved phenomena (Leutbecher and 
Palmer 2008). Figure 15 shows a schematic representation of an ensemble forecast generated by 
an NWP model. The trajectories of the perturbed forecasts (blue lines) can differ strongly from 
the control run (red line). The spread of the resulting members (blue stain) represents the 
forecast uncertainty. For example, the ECMWF provides an ensemble forecast from the IFS 
model. It consists of 1 control run and 50 “perturbed” members. 

Though members of the ensemble are not directly linked to the notion of quantiles, they can be 
seen as discrete estimates of a CDF when they are sorted in ascending order. Lauret, David, and 
Pinson (2019) proposed different ways to associate these sorted members to a CDF. 

Figure 15. A schematic illustration of an ensemble forecast generated with an NWP model. 
Image from Met Office, © British Crown copyright (2021)  

6.3.2 Post-Processing of the Ensemble Prediction System 
Global and regional NWPs are designed to forecast a large variety of meteorological variables 
(but mainly precipitation and temperature) and have not previously focused on the accurate 
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generation of the different components of solar radiation. Consequently, raw ensembles provided 
by meteorological centers suffer from a lack of accuracy, a lack of calibration, or both 
(Leutbecher and Palmer 2008). Additionally, see, e.g., Yang et al. (2020) for definitions and 
discussions about the specific meaning of accuracy, calibration, and other specialized terms in 
the field of forecasting—some of which appearing in the following. Overall, raw ensemble 
forecasts are systematically refined by post-processing techniques (also called calibration 
techniques) to further improve their quality.  

The aim of post-processing is to apply a statistical calibration to the PDF drawn by the raw initial 
ensemble forecasts to optimize a specific metric (e.g., the continuous ranked probability score 
[CRPS] described in Section 6.4) used to assess the quality of probabilistic forecasts. Indeed, as 
well as having a coarse spatial resolution, the ensemble forecasts from NWPs are known to be 
underdispersive; in other words, they exhibit a lack of spread (Leutbecher and Palmer 2008). To 
address this, Sperati, Alessandrini, and Delle Monache (2016) proposed two different methods 
already used in the realm of wind forecasting: The variance deficit method designed by Buizza et 
al. (2003) and the ensemble model output statistic (MOS) method proposed by Gneiting et al. 
(2005). Even if these methods cannot be considered to be parametric, they are based on the 
characteristics of a normal distribution. Indeed, such a distribution is appealing because it can be 
assessed with only two parameters: the mean and the standard deviation, which are related to the 
average bias and the spread of the ensemble, respectively. 

Another method of calibration is based on the rank histogram (see Section 6.4); it was initially 
proposed by Hamill and Colucci (1997) for precipitation forecasts. Zamo et al. (2014) applied 
this method to the Météo France’s EPS, called PEARP, to generate probabilistic solar forecasts. 
The aim of this method is to build a calibrated CDF from the rank histogram derived from past 
forecasts and observations. Other techniques of EPS calibration exist, but they have not been 
used for solar forecasting. For example, Pinson (2012) and Pinson and Madsen (2009) suggested 
a framework for the calibration of wind ensemble forecasts. Junk, Delle Monache, and 
Alessandrini (2015) proposed an original calibration model for wind-speed forecasting applied to 
ECMWF-EPS based on the combination of nonhomogeneous Gaussian regression and AnEn 
models. Likewise, Hamill and Whitaker (2006) suggested an adaptation of the AnEn technique 
for the calibration of ensemble precipitation forecasts using the statistical moments of the 
distribution, such as the mean and spread of the members as predictors. See Wilks (2018) for a 
thorough review of univariate ensemble postprocessing methods. 

6.4 Verification of Solar Probabilistic Forecasts 

6.4.1 Properties Required for a Skillful Probabilistic System 
Several attributes characterize the quality of probabilistic forecasts (Jolliffe and Stephenson 
2011; Wilks 2014), but two main properties (reliability and resolution) are used to assess the 
quality of the forecasts. 

The reliability or calibration refers to the statistical consistency between forecasts and 
observations; in other words, a forecast system has a high reliability if the forecast probability 
and observed frequency agree. The reliability property is an important prerequisite because 
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nonreliable forecasts would lead to a systematic bias in subsequent decision-making processes 
(Pinson et al. 2007). 

The resolution measures the ability of a forecasting model to generate predictive distributions 
that depend on forecast conditions. Put differently, the more distinct the observed frequency 
distributions for various forecast situations are from the full climatological distribution, the more 
resolution the forecast system has. Climatological forecasts are perfectly reliable but have no 
resolution. Consequently, a skillful probabilistic forecasting system should issue reliable 
forecasts and should exhibit high resolution. 

Sharpness, which refers to the concentration of predictive distributions, can be measured by the 
average width of the prediction intervals. Unlike reliability and resolution, sharpness is a 
function of only the forecasts and does not depend on the observations. Consequently, 
a forecasting system can produce sharp forecasts yet be useless if the probabilistic forecasts are 
unreliable.  

6.4.2  Probabilistic Verification Tools 
The evaluation framework is based on visual diagnostic tools and numerical scores. 

6.4.2.1 Visual Diagnostic Tools 
Table 1 lists the diagnostic tools for which Lauret, David, and Pinson (2019) provided pros and 
cons as well as detailed information about their implementation. Note that some tools were 
initially designed for a specific type of forecast (i.e., an ensemble or quantile forecast) and that 
there is apparently no visual diagnostic tool to assess the resolution property. 

Table 1. Visual Diagnostic Tools 

Diagnostic Tool Remarks 

Reliability diagram Initially designed for the reliability assessment of quantile forecasts 

Can be used for ensemble forecasts if members are assigned specific probability 
levels (see Lauret, David, and Pinson [2019]) 

Rank histogram Initially designed for the reliability assessment of ensemble forecasts 

Can be extended to quantile forecasts if quantiles are evenly spaced 

Probability integral 
transform histogram 

Represents a reliability assessment of quantile forecasts 

Sharpness diagram Plots the average width of the prediction intervals for different nominal coverage 
rates 

Sharpness can only contribute to a qualitative evaluation of the 
probabilistic forecasts. 

Even if narrow prediction intervals are preferred, sharpness cannot be seen as a 
property to verify the quality of probabilistic forecasts but is more like the 
consequence of a high resolution. 
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Table 2. Forecast Metrics 

Forecast Metric Remarks 

Continuous ranked probability 
score (CRPS) 

Can be normalized to define a skill score (CRPS skill score) 

Can be further partitioned into the two main attributes: reliability and 
resolution 

Ignorance score Local score (i.e., the score depends only on the value of the predictive 
distribution at the observation) 

Cannot be normalized 

Interval score Specifically designed for interval forecasts 

Quantile score Forecast performance of specific quantiles 

6.4.2.2 Numerical Scores 
Numerical scores provide summary measures for the evaluation of the quality of probabilistic 
forecasts. Table 2 enumerates the main scoring rules for evaluating the quality of probabilistic 
forecasts of a continuous variable. All the scores listed in the table are proper scoring rules 
(Gneiting and Raftery 2007), hence ensuring that perfect forecasts are given the best score value. 
Lauret, David, and Pinson (2019) gave a detailed definition of each score.  

6.4.3 Presentation of Some Tools and Scores 
This section describes in detail some diagnostic tools and numerical scores. See Lauret, David, 
and Pinson (2019) and Yang et al. (2020) for descriptions of other metrics. 

6.4.3.1 Reliability Diagram 
A reliability diagram is a graphical verification display used to assess the reliability attribute of 
quantile forecasts. Quantile forecasts are evaluated one by one, and their observed frequencies 
are reported versus their forecast probabilities (see Figure 16). Such a representation is appealing 
because the deviations from perfect reliability (the diagonal) can be visually assessed (Pinson, 
McSharry, and Madsen 2010); however, because of both the finite number of pairs of 
observation/forecast and also possible serial correlation in the sequence of forecast-verification 
pairs, observed proportions are not expected to lie exactly along the diagonal, even if the density 
forecasts are perfectly reliable. Pinson, McSharry, and Madsen (2010) proposed a method to add 
consistency bars to the reliability diagram. This adding of consistency bars to the reliability 
diagrams can help users gain more confidence in their (possibly subjective) judgment regarding 
the reliability of the different models. Figure 16 shows an example of reliability diagram with 
consistency bars. In this example, the forecasts cannot be considered reliable because the line 
corresponding to the forecasts falls outside the consistency bars. More elaborate reliability 
diagrams are proposed by Yang (2019a, 2019c).  
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Figure 16. Example of a reliability diagram. Consistency bars for a 90% confidence level around 
the ideal line are individually computed for each nominal forecast probability. 

6.4.3.2 Rank Histogram 
A rank histogram is a graphical display initially designed for assessing the reliability of ensemble 
forecasts (Wilks 2014). Rank histograms permit users to visually assess the statistical consistency 
of the ensemble—that is, if the observation can be seen statistically like another member of the 
ensemble (Wilks 2014). A flat rank histogram is a necessary condition for ensemble consistency 
and shows an appropriate degree of dispersion of the ensemble. An underdispersed or 
overdispersed ensemble leads to U-shaped or hump-shaped rank histogram; see Figure 17. 

In addition, some unconditional biases can be revealed by asymmetric (triangle-shaped) rank 
histograms. It must be stressed that one should be cautious when analyzing rank histograms. As 
shown by Hamill (2001), a perfectly flat rank histogram does not mean that the corresponding 
forecast is reliable. Further, when the number of observations is limited, consistency bars can 
also be calculated with the procedure proposed by Bröcker and Smith (2007). 

Figure 17. Illustrative examples of rank histograms for an ensemble of M = 9 members. The 
horizontal solid blue line denotes the statistical consistency of the ensemble. The dashed-dotted 

lines represent the consistency bars. Figure inspired from Wilks (2014) 
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6.4.3.3 Overall Skill Assessment with the Continuous Ranked Probability Score 
The most common skill score for evaluating the quality of predictive densities of continuous 
variable is the CRPS, whose formulation is: 

𝐶𝐶𝑅𝑅𝑃𝑃𝑆𝑆 =
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where 𝐹𝐹�𝑆𝑆𝐴𝐴𝑆𝑆𝑝𝑝𝑡𝑡(𝑦𝑦) is the predictive CDF of the variable of interest, x (e.g., GHI), and 𝐹𝐹 𝑏𝑏𝑝𝑝(𝑦𝑦) is a 
CDF of the observation (i.e., a step function that jumps from 0 to 1 at the point where the 
forecast variable, 𝑦𝑦, equals the observation, 𝑦𝑦𝑆𝑆𝑏𝑏𝑝𝑝). The squared difference between the two CDFs 
is averaged over the N forecast/observation pairs. Note that the CRPS is negatively oriented 
(smaller values are better) and has the same dimension as the forecasted variable.  

Figure 18(a) shows three hypothetical predictive PDFs, and Figure 18(b) plots the corresponding 
predictive CDFs. The black thick line in Figure 18(b) represents the CDF of the observation, 𝐹𝐹  

(𝑦𝑦 ). Because CRPS represents the integrated squared difference between the two CDFs, the 
pair of observation/forecast indicated by 1 will be assigned the best score. Conversely, forecasts 
indicated by 2 and 3 will lead to a higher CRPS. Indeed, although it has the same degree of 
sharpness as Forecast 1, Forecast 2 is not centered on the observation (i.e., this is a biased 
forecast). Regarding Forecast 3, even though it is centered on the observation, it is less sharp 
than forecasts 1 and 2. In summary, CRPS rewards the concentration of probability around the 
step function located at the observed value (Hersbach 2000). 

Figure 18. Schematic of the CRPS skill score. Three forecast PDFs are shown in relation to the 
observed variable in (a). The corresponding CDFs are shown in (b), together with the step function 

CDF for the observation (black heavy line). Forecast PDF 1 would produce a small (i.e., good) CRPS. 
This would not be the case for Forecast 2 or Forecast 3. Illustration inspired from Wilks (2014) 
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The CRPS can be further partitioned into the two main attributes of probabilistic forecasts 
described: reliability and resolution. The decomposition of the CRPS leads to:  

𝐶𝐶𝑅𝑅𝑃𝑃𝑆𝑆 = RELIABILITY –  RESOLUTION + UNCERTAINTY. (22) 

The uncertainty term cannot be modified by the forecast system and depends only on the 
observation’s variability (Wilks 2014). Because the CRPS is negatively oriented, the goal of a 
forecast system is to minimize the reliability term and maximize the resolution term as much as 
possible. Hersbach (2000) and Lauret, David, and Pinson (2019) detail the procedures for 
calculating the different terms (reliability and resolution, respectively) for ensemble and quantile 
forecasts.  

It must be stressed that the decomposition of the CRPS provides quantitative overall measures of 
reliability and resolution, hence providing additional and valuable insight into the performance 
of a forecasting system.  

Similarly, to obtain skill scores used for evaluating deterministic forecasts (Coimbra et al. 
2013b), a CRPS skill score (CRPSS) can be derived to quantify the improvement brought by a 
new method over a reference easy-to-implement (or “baseline”) model, such as: 

𝐶𝐶𝑅𝑅𝑃𝑃𝑆𝑆𝑆𝑆 = 1 −
𝐶𝐶𝑅𝑅𝑃𝑃𝑆𝑆𝑆𝑆𝑡𝑡𝑤𝑤 𝑡𝑡𝑡𝑡𝑡𝑡ℎ𝑆𝑆𝑚𝑚

𝐶𝐶𝑅𝑅𝑃𝑃𝑆𝑆𝑅𝑅𝑡𝑡𝑆𝑆𝑡𝑡𝐴𝐴𝑡𝑡𝑆𝑆𝑆𝑆𝑡𝑡
. (23) 

Negative values of CRPSS indicate that the new proposed method fails to outperform the 
reference baseline model, and positive values of CRPSS mean that the new method outperforms 
the reference model. Further, the higher the CRPSS, the better the improvement. Note that the 
uncertainty part of the decomposition of the CRPS (which corresponds to the score of the 
climatology) can be used as a reference baseline model. CRPSS and a mean-normalized CRPS 
are also discussed by Yang (2020). 

8.6.4.3.4 Interval Score 
The interval score (IS) specifically assesses the quality of interval forecasts. As shown by Eq. 24 
the interval score rewards narrow prediction intervals but penalizes (with a penalty term that 
increases with increasing nominal coverage rate) the forecasts for which the observation, 𝑝𝑝𝑆𝑆𝑏𝑏𝑝𝑝, is 
outside the interval. For a (1 − 𝛼𝛼) × 100% nominal coverage rate, the interval score reads as: 
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where 𝐼𝐼𝑢𝑢 is the indicator function (𝐼𝐼𝑢𝑢=1 if U is true and 0 otherwise). 𝑈𝑈𝐴𝐴 and 𝐿𝐿𝐴𝐴 represent the 
upper �𝜏𝜏 = 1 − 𝛼𝛼
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2
� quantiles, respectively.
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A plot of interval scores for different nominal coverage rates might offer a consistent evaluation 
of the quality of interval forecasts. Consequently, such a plot could advantageously replace the 
sharpness diagram. 

6.4.4 Benchmark Probabilistic Models 
This section describes the benchmark probabilistic models used to gauge the performance of 
new proposed probabilistic methods using skill scores such as the CRPSS. By analogy with the 
deterministic approach, persistence ensemble (PeEn) models based on GHI (Alessandrini et al. 
2015) and on clear-sky index (David et al. 2016) have been proposed. The empirical CDF of a 
PeEn forecast is simply built with the most recent 𝑘𝑘 past measurements of solar irradiance. 
Considering an infinite number of past measurements, the PeEn turns to be the climatology. In 
numerous other fields of meteorology, climatology is often considered to be a reference that can 
be used to test the performance of probabilistic models (Wilks 2014). Indeed, the climatology is 
perfectly reliable, but it has no resolution. Also, an advanced climatology, called the complete-
history persistence ensemble, was proposed by Yang (2019b); this reference model corresponds 
to a conditional climatology where the time of the day is used as a predictor. In addition, for 
ensemble forecasts, the CRPS of the raw ensemble can serve as a benchmark. 

7 Summary and Recommendations for Irradiance Forecasting 
Solar power forecasting is essential for the reliable and cost-effective system integration of solar 
energy. It is used in for a variety of applications with their specific requirements with respect to 
forecast horizon and spatiotemporal resolution. To meet these needs, different solar irradiance 
and power forecasting methods have been developed, including physical and empirical models as 
well as statistical and machine learning approaches. Based on these developments, a number of 
forecasting services of good quality is available for users today. In the following, a summary of 
different forecasting methods and their applicability for different tasks is given, along with 
criteria that determine model performance as well as recommendations for forecast evaluation.  

• Different empirical and physical models are suitable for different forecast horizons.
Generally, the spatiotemporal resolution of irradiance forecasts decreases with increasing
forecast horizon.

• Short-term irradiance forecasts from 10–20 minutes ahead resolving irradiance ramps
with a temporal resolution of minutes or even less can be derived from ASIs using cloud
motion-based methodologies.

• Irradiance forecasts up to several hours ahead with typical resolutions from 10–15
minutes can be derived from satellite data covering large areas, also using cloud motion-
based methodologies.

• Irradiance forecasting from several hours to days ahead essentially relies on NWP
models, with their capability to describe complex atmospheric dynamics, including
advection as well as the formation and dissipation of clouds.

The performance of the different forecast models depends on multiple factors that have different 
impacts depending on the forecast horizons: 

• The capability of the models to predict changes in clouds and irradiance
• The performance of the models for irradiance retrieval/analysis
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• The capability of the models to predict AOD, especially for DNI forecasting in arid
regions

• Input data to the model (parameters as well as the area covered by the input data)
• Time for a model run (run-time determines a lower limit for the delay of observations at

the time of forecast delivery)
• Spatiotemporal resolution.

Complementing empirical and physical models, statistical and machine learning methods are 
widely used in solar irradiance and power forecasting: 

• For time-series models and post-processing, which require reference values for training,
the availability of irradiance and/or PV power measurements is crucial, as is proper
quality control of the data. Satellite-derived data can also be used for training on
irradiance.

• Short-term forecasting up to approximately 1 hour ahead benefits greatly from the use of
local online irradiance or PV power measurements as input; however, pure time-series
approaches based on local measurements only are outperformed by approaches
integrating empirical and/or physical model forecasts from a few minutes to hours
onward, depending on the spatiotemporal scale of the forecasts and the climatic
conditions of the forecast location.

• Statistical and machine learning approaches are applied effectively for improving
forecasts with empirical or physical models (post-processing). They can reduce
systematic meteorological forecast errors. Training to PV power measurements in
addition allows adaptation to the specifics of a given PV plant or to replace PV
simulation models.

• Machine learning models are increasingly applied to replace parts of empirical models,
e.g., algorithms to compute optical flow in cloud motion approaches.

State-of-the-art solar irradiance or PV power forecasting services do not rely on a single 
forecasting model but integrate and optimize different tools and data, with prominent examples 
given here: 

• High-resolution intrahour forecasting systems combine the use of local measurements
and ASI data with empirical and machine learning approaches.

• Forecasting systems for the intraday energy market up to several hours ahead integrate
online measurements, satellite-based forecasts, and NWP model-based forecasts with
statistical and/or machine learning approaches.

• Forecasting systems from several hours to several days ahead use different NWP models
as input in combination with statistical and/or machine learning approaches.

Besides forecasting for single PV power plants, the estimation and forecasting of regionally 
aggregated PV power is important for grid operators. It involves the same modeling approaches 
described. Here, an additional challenge is that information on all the PV power plants 
contributing to the overall feed-in is often incomplete. Also, PV power is not measured at a 
sufficient resolution for most plants in many countries; therefore, upscaling approaches have 
been developed and are applied effectively to derive and forecast regionally aggregated PV 
power. Because of spatial smoothing effects, forecast errors of regionally aggregated PV power 
(normalized to the installed power) are much smaller than for single PV plants, depending on the 
size of the region and the set of PV plants contributing. 
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Forecast evaluations provide users with necessary information on forecast accuracy, assisting 
them in choosing between different forecasting services or assessing the risk when a forecast is 
used as a basis for decisions. The assessment of forecast accuracy should combine visual 
diagnostics (e.g., scatter plots or 2D histograms of forecasts and observations) and quantitative 
error measures (e.g., RMSE and skill in comparison to persistence). In addition to the model 
used, forecast accuracy depends on different factors, including the climatic conditions and the 
spatiotemporal scale; therefore, specific evaluation for a given application considering these 
factors is recommended—i.e., an evaluation for sites in a similar climate and with similar 
spatiotemporal resolutions. 

Beyond general information on the overall accuracy of a deterministic forecast, probabilistic 
forecasts provide specific uncertainty information for each forecast value, depending on the 
weather conditions. Probabilistic forecasts take the form of CDFs or PDFs. They are summarized 
by quantiles from which prediction intervals can be inferred. Quantiles can be estimated using 
either a parametric or a nonparametric approach. In the latter case, statistical or machine learning 
techniques can be used to estimate the quantiles. Although NWP ensemble members are not 
directly linked to the notion of quantiles, different propositions exist to infer a CDF from an 
ensemble. As an example, for deterministic forecasting, the assessment of the quality of the 
probabilistic forecasts is based on visual diagnostic and proper scoring rules. In particular, the 
CRPS seems to have all the features needed to evaluate a probabilistic forecasting system and, as 
such, could become a standard for verifying probabilistic forecasts of solar irradiance and power. 

Finally, forecasting solar irradiance should be evaluated in the context of strategies for the 
system integration of solar power, which aim to provide the necessary power to cover demand at 
any time. These strategies include spatial smoothing for grid-integrated PV and increasingly also 
the use of storage (batteries) and curtailment as well as in combination with other variable 
renewable energy sources, especially wind power. Applying these strategies reduces the 
variability of solar power as well as forecast errors. 
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1. True or False? High penetrations of PV power generation pose several 
challenges for the stability of the electric grid because of the stochastic 
variability of the residual electric load (i.e., the difference between the 
energy need—or load—and the distributed PV power generation, 
depending on meteorological conditions and sun position). 

•  True 

•  False 

2. Which forecasting method is based on numerical weather prediction 
(NWP) models? 

•  Intraday and day-ahead forecasts 

•  Intrahour forecasts with high spatial and temporal resolution 

•  Forecasts up to 4 hours ahead 

•  Irradiance forecasting with cloud motion vectors 

3. This forecasting method uses horizontally installed cameras which 
photograph the whole sky above them? 

•  Irradiance Forecasting with Cloud Motion Vectors 

•  Satellite-Based Forecasts 

•  Forecasting Using Ground-Based All-Sky Imagers 

•  Irradiance Forecasting with Numerical Weather Prediction 

4. True or False? Instead of using only one or a few ASI systems, networks of 
approximately 10 or more ASIs can be created to increase the spatial 
coverage, the forecast horizon, and the accuracy of observations. 

•  True 

•  False 

5. Methods to calculate Cloud Motion Vectors (CMV)s from satellite images 
__________in operational weather forecasting. 

•  are not accurate enough to be used in 

•  is new and maybe upcoming but not yet proven with a high degree of 
accuracy for 

•  have been developed and are routinely used 

•  is antiqued method no longer used for 
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6. Today, most NWP models offer __________ as direct model output. 
•  Direct normal irradiance (DNI) 

•  Global horizontal irradiance (GHI) 

•  Diffuse horizontal irradiance (DHI) 

•  None of the above 

7. NOAA’s High-Resolution Rapid Refresh (HRRR) model is an example of 
which type of forecast model? 

•  Operational Numerical Weather Prediction Models 

•  High-Spectral-Resolution Models 

•  Water Clouds Climate Models 

•  Semiempirical BRDF Models 

8. Which the of following are Examples of machine learning models applied 
for forecasting? 

•  Artificial Neural Networks 

•  Gradient Boosted Regression Trees 

•  Extreme Learning Machines 

•  All of the above 

9. Why does statistical post-processing (or machine learning with exogenous 
input) play an important role in irradiance and PV power forecasting? 

•  Combines the outputs of different models 

•  Reduces model errors by considering unaccounted or partially accounted 
local and regional effects (e.g., topography and aerosols) 

•  Derives quantities that are not direct model outputs. 

•  All of the above 

10. True or False? The simplest way to forecast the production of a PV power 
plant is to apply a PV power simulation model to the forecast of the 
relevant predicting variables (primarily irradiance, but also environmental 
temperature and wind speed). 

•  True 

•  False 
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11. Regional PV power feed-in can be estimated using which of the following 
data? 

•  Meteorological data (irradiance and temperature) 

•  Measurements of the output of PV plants 

•  Information on the fleet of PV system: coordinates and installed capacity 
(along with tilt and orientation if available). 

•  All of the above 

12. True or False? The evaluation of solar irradiance forecasts provides users 
with the necessary information about forecast accuracy and helps them 
choose different forecasting products or assess the risk when using a 
particular forecast as a basis for decisions. 

•  True 

•  False 

13. In regard to analysis of forecast error with respect to cloud variability and 
spatiotemporal averaging, forecast error __________ with enhanced cloud 
variability. 

•  is typically unchanged even 

•  decreases 

•  increases 

•  variables must be adjusted 

14. By enlarging the footprint of the forecast region of interest, forecast errors 
are __________. 

•  reduced 

•  not changed 

•  increased 

•  exponentially increased 

15. Expanding the transmission grid to manage the power generation in large 
areas (e.g., entire countries instead of market zones has which benefit? 

•  Reduces congestion 

•  Reduced constraints on production capacity 

•  Increases the forecast accuracy 

•  All of the above 
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16. Which type of forecast provides additional information about the inherent 
uncertainty embodied in numerical weather prediction (NWP)? 

•  Deterministic forecasts 

•  Physical forecasts 

•  Probabilistic forecasts 

•  Empirical forecasts 

17. What model assumes that the variable of interest or the prediction error 
follows a known law of distribution? 

•  Parametric 

•  Nonparametric 

•  Ensemble Prediction System 

•  Probabilistic 

18. The __________ measures the ability of a forecasting model to generate 
predictive distributions that depend on forecast conditions. 

•  sharpness 

•  resolution 

•  reliability 

•  quantitative 

19. True or False? Solar power forecasting is essential for the reliable and cost-
effective system integration of solar energy. 

•  True 

•  False 

20. True or False? State-of-the-art solar irradiance or PV power forecasting 
services do not rely on a single forecasting model but integrate and 
optimize different tools and data. 

•  True 

•  False 
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