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Course Description: 
The Artificial Intelligence/Machine Learning Technology in 
Power System Applications course satisfies five (5) hours of 
professional development.  
The course is designed as a distance learning course that 
provides a comprehensive overview of AI/ML technologies 
relevant to power systems, including supervised, 
unsupervised, reinforcement learning, graph neural networks, 
and generative AI. It offers insights into practical applications 
such as fault detection, state estimation, asset management, 
renewable energy forecasting, and contingency analysis, 
while also addressing future opportunities and 
implementation challenges. 
This course is based from Artificial Intelligence/Machine 
Learning Technology in Power System Applications 
published by the U.S. Department of Energy. 

 
Objectives: 

The primary objective of the course is to equip engineers 
with advanced knowledge and analytical skills to effectively 
apply AI/ML methods to enhance the reliability, efficiency, 
and resilience of power systems, while critically assessing 
risks, security, and trust considerations. 
 

Grading:  
Students must achieve a minimum score of 70% on the 
online quiz to pass this course. The quiz may be taken as 
many times as necessary to successfully pass and complete 
the course.  
A copy of the quiz questions is attached to the last pages of 
this document. 
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Overview 
The primary purpose of this course is to provide an overview of the advancement in artificial 
intelligence and machine learning (AI/ML) technologies and their applications in power systems. 
It offers a foundation for understanding the transformative role of AI/ML in power systems and 
aims to stimulate further research and development in this area. 

This course begins with a historical perspective of AI/ML technologies, then explores their 
advancement to today’s prominence. The course highlights key contributors to the success of 
AI/ML technologies, including increased computational power, greater data availability, 
innovative algorithms, and advanced tools. It further introduces various AI/ML techniques, 
including supervised, unsupervised and reinforcement learning, graph neural networks, and 
generative AI. It also emphasizes the critical importance of ensuring the safety, security, and 
trustworthiness of these AI/ML techniques within this sector. 

The course reviews the recent representative advancements in various power system 
applications enhanced by AI/ML techniques, underscoring key developments and their 
transformative impact as evidenced by numerous studies. It also explores both the opportunities 
and challenges associated with the application of AI/ML technologies to improve power system 
applications. 

While the course extensively covers AI/ML applications in power systems, focusing primarily on 
the technical and operational aspects, it may not thoroughly explore the sociopolitical, 
economic, and broader regulatory implications of AI/ML integration in power systems. 

AI/ML techniques hold significant potential for enhancing power system applications; however, 
they are not omnipotent. It is crucial to acknowledge their limitations and understand that they 
may not be able to address all challenges in the power system domain. Various factors must be 
considered that influence the implementation, adoption, and effectiveness of AI/ML solutions, 
including but not limited to safety, security, transparency, and trustworthiness. Additionally, the 
incorporation of advanced human–machine interfaces is essential, as it enables humans to 
validate the effectiveness of AI/ML solutions while remaining actively engaged, fostering trust in 
AI/ML deployment. 

Finally, the course summarizes AI/ML research activities supported by the Department of 
Energy (DOE) Office of Electricity (OE) through the Advanced Grid Modeling (AGM) program. 

The work aligns with the interests and mission of DOE-OE AGM, with the course serving as a 
resource for identifying existing progress and for pinpointing future applications within AI/ML that 
need further exploration and support. 
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1.0 Introduction 
Every industrial revolution in human history has been propelled by a major technology 
breakthrough—from manufacturing, energy production, and industrial sectors to information 
technology and the digital economy. As humans move beyond mobile communication and 
internet adoption, we will embrace new changes and transitions in our daily life to use 
heterogeneous and ubiquitous communication and computing technologies. To maximize the 
potential of proliferated compute and computing capabilities, artificial intelligence (AI) and 
machine learning (ML) have become widely recognized as the new catalyst in the fourth 
industrial revolution. 

In the domain of power systems, the complexity of managing these systems is escalating with 
the increased dynamics and uncertainty resulting from the pursuit of deep decarbonization. 
Additionally, there is a surge in multi-dimensional data with shorter response time periods 
required. Current technologies are not sufficient to handle future complexities. AI/ML 
technologies have emerged as a transformative force to alleviate these challenges, heralding a 
new era of efficiency, reliability, and innovation. This course aims to provide an overview of 
state-of-the-art AI/ML technologies. More importantly, it aims to show their application and 
impacts on the planning and operation of power systems, the future opportunities that they 
present, and the challenges that accompany their integration into power systems. An 
examination of various ML techniques, including supervised, unsupervised, and reinforcement 
learning, forms the backbone of our exploration. We will discuss the representative applications 
of these techniques in power system management, spanning from fault detection, asset 
management and predictive maintenance, to oscillation detection. 

The information is supported by the Department of Energy (DOE), Office of Electricity (OE), 
through its Advanced Grid Modeling (AGM) program. The AI/ML research activities supported 
by the AGM program are also summarized in this course. This course serves as a guide, 
helping navigate the exciting possibilities and potential challenges in the captivating blend of AI/
ML and power system applications. 

Artificial Intelligence/Machine Learning Technology in Power System Applications 2



2.0 Why Does Machine Learning Work Today? 
In the contemporary landscape, the effectiveness of ML stems from a confluence of factors that 
have propelled its success. One pivotal aspect is the unprecedented access to vast and diverse 
datasets—a critical ingredient for training sophisticated models. Notably, breakthroughs in data 
collection methodologies have empowered ML systems to learn intricate patterns and nuances 
which contribute to their robust performance. 

As a branch of AI, ML uses algorithms and neural network (NN) models to build mathematical 
models using data sampling (training data) to make decisions based on logic and knowledge 
instead of scientific equations (Figure 1). ML has been studied since the 1950s to enable 
machines to “think” like human brains do and began to flourish in the 1980s to help efficiently 
solve science and engineering problems. Despite alternating periods of bust and boom, it was 
not until recently that AI started to deeply affect every domain of application and the average 
person’s life (Copeland 2016). A remarkable event occurred in 2016, kicking off the blooming of 
the latest deep-learning wave when AlphaGo from Google DeepMind beat the human world 
champion in the game of Go. AlphaGO demonstrated the capability of ML to master complex 
games through reinforcement learning. This victory marked a paradigm shift, showcasing the 
potential of ML to tackle challenges that were once deemed insurmountable. 

Figure 1. History and development of ML technology. 

Since then, tremendous advancement of ML in various domains has been seen, including 
computer vision, image recognition, data compression, language processing, health care and 
robotics—with the most successes witnessed in the domain of deep learning. Deep learning 
employs a deep neural network (DNN) as the model. It typically has dozens of layers, with 
millions and even billions of free parameters. This complexity of the model is what makes deep 
learning powerful. Take AlphaGo as an example, it includes three components: the policy DNN, 
the value DNN, and the Monte Carlo (MC) tree search. The policy DNN is first trained by 
supervised learning from existing experience data, then reinforcement learning (RL) is applied 
to further improve the performance via millions of self-playing actions. The value DNN is a 
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convolution neural network (CNN), which evaluates the proposal from the policy DNN. Finally, 
the MC tree eliminates branches and determines the final strategy. 

Despite the tremendous success of DNNs, using NNs for ML is not something new (Figure 2). 
Researchers have experimented with DNNs for more than two decades but had only seen 
limited success (Lai 1998). For example, in 1990, the artificial neural network (ANN) had already 
been investigated for its application to power grid load forecasting (Feinberg and Genethliou 
2005). 

Figure 2. Four main waves of ML technology. 

The recent success in deep learning can be attributed to four main factors: increased 
computational power, greater data availability, innovative algorithms, and advanced tools, as 
described below. 

• Increased Computational Power: Training such a large model requires a lot of
computational power. Thanks to Moore’s law, computational power has been increased 1
trillion-fold in the last 60 years. ML especially began to shine after the introduction of the
modern graphics processing unit (GPU), whose parallelism perfectly matches the
computational needs of ML. Today, training a typical DNN model for image classification
requires days on a GPU cluster, which was not feasible a decade ago. With recent research
on dedicated hardware for ML, such as a tensor processing unit, computer scientists have
seen more powerful ML models with broader applications (Jouppi et al. 2017).

• Greater Data Availability: ML is data-driven and data-hungry. It is modern practice to
digitize almost everything in our daily life and share everything on the internet. For example,
photos are uploaded to Instagram, videos are published on YouTube, even books are
digitized and 5G is deployed in modern cities. The internet, social networks, and mobile
devices make it cheap and easy to generate a huge amount of data, which facilitates ML.
Billions of internet users have provided an abundance of data which is required to fuel deep-
learning algorithms. On today’s power grid, a large amount of measurement data, including
but not limited to supervisory control and data acquisition (SCADA), phasor measurement
unit (PMU) data, smart meter data, and the data generated by grid-edge technologies, is
available. In addition to these power system data, data come from other domains, such as
climate, cybersecurity, and communications, are also important to support grid
management. Besides these measurement data, there is also a large amount of simulation
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data available that can help power system engineers conduct big data research. The 
increasing availability of data from diverse poses challenges but also opportunities to drive 
ML technology development. 

• Innovative Algorithms: A common way to train a NN is called back-propagation which is
an algorithm for training ANNs first introduced by Rumelhart in 1986. However, naively
applying back-propagation is not effective for training a DNN. In the last few years,
researchers started to understand the reasons for this and have developed novel techniques
to overcome this training challenge.
– Diminishing gradient is one of the major obstacles to training DNNs because the

gradient tends to become smaller and smaller when propagating back through many
layers. This can cause premature convergence. Researchers have developed better
nonlinear activation, such as rectified linear unit (Nair and Hinton 2010) or leaky rectified
linear unit (Maas et al. 2013) that replace the traditional sigmoid to combat diminishing
gradient.

– Optimizing a NN is a nonlinear optimization problem. Back-propagation will converge to
local minima if the network weights are not initialized properly. Unsupervised pretraining
is an effective way to initialize the network weights close to a good local minimum (Erhan
et al. 2010).

– Training a DNN is further complicated by the changing distribution of each layer’s inputs
because the weights in previous layers change. This slows down the training and
requires careful weights initialization. Batch normalization normalizes the layer inputs
and incorporates this normalization operation as part of the network architecture (Ioffe
and Szegedy 2015).

– Due to model complexity the DNN tends to overfit the data, which leads to poor
generalization. Dropout is a novel invention for preventing overfitting, especially when
the data are scarce (Srivastava et al. 2014).

– Last but not least, researchers have also designed sophisticated NN architectures that
are tailored for specific domains. For example, CNNs, ResNet, and DenseNet work great
for image/vision tasks, while long short-term memory (LSTM) is good for sequence
modeling and language processing (Goodfellow et al. 2016; He et al. 2016; Huang et al.
2017a; Schmidhuber and Hochreiter 1997). Most recently, meta-learning has emerged
as an alternative that can automatically search for the optimal NN architecture for
different problems (Hospedales et al. 2021).

• Advanced Tools: In most of the research and application of AI/ML before 2010,
researchers and engineers had to develop their ML algorithms from scratch for different
applications which significantly limited their application, verification, and acceptance by
stakeholders. Since 2010, rapid development of ML tools (mostly open-sourced, for
example, Tensorflow, Pytorch, and Scikit-learn) have democratized the application of AI/ML
in many domains. This is particularly important for power system applications where there
are a limited number of researchers and engineers who can develop ML algorithms without
these tools.

Furthermore, the trajectory of ML success extends to language models, exemplified by 
ChatGPT. The advent of transformers and attention mechanisms has revolutionized natural 
language processing. ChatGPT, a product of OpenAI, epitomizes the prowess of large-scale 
language models. Its ability to generate coherent and contextually relevant responses reflects 
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the synergy between advanced algorithms and expansive datasets, making it an indispensable 
tool for a myriad of applications. 

The exponential growth in computational power has been another catalyst for the contemporary 
effectiveness of ML. The availability of high-performance hardware, including GPUs and tensor 
processing units, has expedited the training of complex models. This acceleration in 
computation not only enables quicker experimentation but also facilitates the training of larger 
and more sophisticated NNs, ultimately enhancing the capabilities of ML systems. 

In essence, the success stories from AlphaGo to ChatGPT underscore the evolution of ML and 
its efficacy today. The convergence of extensive datasets, advanced algorithms, and enhanced 
computational power has ushered in a new era where ML not only works but excels, driving 
innovation across various domains, including power systems. 
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3.0 A Brief Introduction to Machine Learning Techniques 
ML techniques can be broadly categorized into three main types: (1) supervised learning; (2) 
unsupervised learning; and (3) reinforcement learning, as depicted in Figure 3 and described 
below. 

Figure 3. A simple illustration of ML techniques. 

3.1 Supervised Learning 

In supervised learning, predictive functions are found based on the data that is available. In the 
supervised setting, the goal is to find an f :X →Y, where X is the input space and Y is the output 
(label) space. From a probabilistic point of view, many supervised ML models can be 
categorized as either discriminative models (i.e., learning the conditional probability distribution, 
P(y|x)) of the input x and the label y, or generative models (i.e., learning the joint probability 
distribution, P(x, y)). As labels are readily available for the data, the objective of learning is clear 
and the result of learning can be easily compared. Thus, supervised learning is by far the most 
common task in the field of ML. Generally speaking, a supervised learning task can be classified 
as either a classification or a regression task, which are both commonly seen in power systems. 
Commonly used supervised learning methods include, but are not limited, to SVMs, ANNs, 
digital twins, random forests, logistic regression, naive Bayes classifiers, k-nearest neighbors 
classifiers and regressors, Gaussian processes, and regularized linear regression models. (Ng 
and Jordan 2002). 

In recent years, researchers have shown growing interest in DNNs because of their exceptional 
performance in certain tasks and their unprecedented flexibility. The learning task fulfilled by 
DNN is often referred to as deep learning (note that NNs are not limited to supervised learning). 
The implementation of DNNs allows different levels of representations to be learned from data, 
transforming the process of feature engineering in traditional ML pipelines (Goodfellow et al. 
2016). Popular DNN networks include CNNs, recurrent neural networks (RNNs), and LSTM. 
Generally speaking, CNNs are often used to extract spatial features, and both RNNs and LSTM 
can be used to extract temporal features or model temporal dependence. 
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Applying deep learning to tasks in power systems has just started to gain attention because 
most DNN models are proposed by researchers who focus on tasks, such as computer vision 
(He et al. 2016), speech recognition (Hinton et al. 2012) and natural language processing (Wu 
et al. 2016), for which large amounts of high-quality data can be generated and shared (LeCun 
et al. 2015). For applications in power systems, however, accumulating high-quality data in 
large volumes is not an easy task. Supervised learning has been investigated for power grid 
applications, such as load/renewable energy forecasting, state estimation, fault detection and 
location, asset healthy monitoring, power system security assessment, and power system 
stability analysis. A detailed review of these applications is provided in later sections. 

3.2 Unsupervised Learning 

Unsupervised learning generally refers to learning tasks that learn from unlabeled data. 
Examples of unsupervised learning tasks include clustering; anomaly detection; dimensionality 
reduction, e.g., principal component analysis and independent component analysis; association 
rules analysis; graph structure discovery; etc. (Hastie et al. 2001; Murphy 2012). The most 
common unsupervised learning task is to cluster unlabeled data samples. Algorithms or models 
used for clustering include k-means, hierarchical clustering, spectral clustering, Gaussian 
mixture models, Dirichlet process mixture models, self-organizing maps, and density-based 
spatial clustering of applications with noise. 

Recently, active research topics of unsupervised learning have included learning 
representations from data and generative models in the unsupervised setting: 
1. Learning representations from data: A comprehensive review of representation learning

was published in 2013 by Bengio and team. Generally speaking, learning representations
reveal the inherent characteristics of the data samples within the dataset being studied, and
complex tasks can be completed on the basis of these representations. From a single-layer
learning module perspective, two representation learning paradigms can be identified, one
focused on probabilistic graphical models (e.g., restricted Boltzmann machines [RBMs]), and
the other one focused on learning direct encodings (e.g., autoencoders) (Bengio et al.
2013). RBMs and autoencoders can both be used to build DNNs in a layer-wise manner,
although recent research has revealed that pretraining is not necessary. Nevertheless, the
end-to-end nature of DNN models is also partially explained by the belief that expressive
representations can be learned by the layers within the networks. Some recent work in the
field of power systems—fault detection, asset healthy monitoring, load profiling, and
nonintrusive load monitoring (NILM)—has highlighted the importance of representation
learning, which is reviewed in detail in the following sections.

2. Generative models in the unsupervised setting: Two types of generative models have
emerged recently and gained much attention: variational autoencoders (VAEs) (Rezende et
al. 2014) and generative adversarial networks (GANs) (Goodfellow et al. 2014). VAEs and
GANs both aim to generate new data points similar to those in a given dataset, but they do
so using different approaches.
VAEs work by learning a latent representation of the data, which is then used to generate
new samples. They involve two neural networks, known as an encoder and a decoder,
which are trained together to capture the underlying structure of the data. VAEs are useful
when the true distribution of the data is complex and difficult to model directly.
On the other hand, GANs operate by training two neural networks simultaneously: a
generative model (G) and a discriminative model (D). The generative model generates data
samples that are likely to be sampled from the distribution of the training data using random
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noise in the latent space, while the discriminative model tries to distinguish between real and 
generated samples. When both D and G are NNs, they can be trained by back-propagation, 
after which G is able to generate realistic data samples. The generative models can be 
extended to the semi-supervised setting where limited labeled data are available—this is 
true for many power system applications. GANs are effective for generating high-quality, 
realistic data samples. They hold significant promise for power system applications, 
especially in the context of renewable energy generation and demand-side scenarios. These 
models not only capture information from existing data, but also facilitate the generation of 
data samples that are unobserved but likely to occur in the real world. 
In summary, VAEs are suitable for learning complex data distributions and capturing latent 
features, while GANs excel at generating realistic data samples. The choice between VAEs 
and GANs depends on the specific requirements of the application and the nature of the 
data being used. 

3.3 Reinforcement Learning 

Unlike other ML techniques that require a large amount of labeled or unlabeled training data, in 
RL, the agent learns optimal decision-making by interacting with the environment through trial 
and error. In this setting, the agent can observe the state of the environment and receive reward 
signals from it. At the same time, the agent can apply actions to change the environment. The 
goal is to apply the optimal action given the current state so that the agent can accumulate the 
most rewards over time. Mathematically speaking, RL formulates and solves a Markov decision 
process (MDP), which involves the state space, the action space, the reward function, the 
distribution of the initial state, the transition probability, and the discount factor. 

RL algorithms can be categorized into policy gradient methods and value-based methods, both 
aiming to optimize a policy that maps states to actions. A natural extension for building RL 
models is to incorporate the building blocks of deep learning, which is particularly helpful for 
large state spaces or action spaces. The technology of combing RL and deep learning are 
called deep reinforcement learning (DRL). Advanced DRL technology includes deep-q-network 
(DQN), deep deterministic policy gradients, normalized advantage functions, and Asynchronous 
Advantage Actor-Critic. (Sutton and Barto 2018). The state-of-the-art DRL technology has been 
proven to provide fast, adaptive, and reliable decisions or control policies in real time, even for 
complex systems with uncertainties. DRL has produced some of the most impressive intelligent 
agents in various applications, including AlphaGo (Silver 2016), video games (Mnih 2013), data 
center temperature control (Li et al. 2019a), and autonomous driving (El Sallab 2017). Many of 
these agents trained by DRL achieved superior performance to humans. Researchers have 
been using RL in a variety of applications related to power and energy systems for residential 
demand response, power system control, and electricity market, which are reviewed in detail in 
later sections. 

3.4 Graph Neural Networks and Graph Machine Learning 

Graphs serve as an omnipresent data structure and a universal means of articulating intricate 
systems. When viewed broadly, a graph essentially comprises entities (referred to as nodes) 
accompanied by a series of connections (denoted as edges) that link pairs of these entities. For 
instance, when translating a social network into a graph format, nodes might represent an 
individual and edges could symbolize friendships between two individuals. In the realm of 
biology, nodes could represent proteins within a graph and edges could depict diverse biological 
interactions, like the kinetic associations between proteins. The potency of the graph framework 
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lies in its twin emphasis on interrelationships among points, rather than the attributes of 
individual points and its wide-ranging applicability. This same graph structure can seamlessly 
represent a spectrum of scenarios, encompassing social networks, interactions between drugs 
and proteins, intermolecular connections, or the interlinking of terminals within a 
telecommunications network, among a myriad of other possibilities. 

There are two main classes of graph neural networks (GNNs): recurrent graph neural networks 
(RGNNs) and convolutional graph convolution networks (CGNNs). 

3.4.1 Recurrent Graph Neural Networks 

RGNNs are the first versions of GNNs. The primary difference between GNN methods and 
typically known CGNNs is that they use the same set of learnable weights across different 
layers, whereas CGNNs use different learnable weights in each layer of GNNs. One can say 
these are the first works that tried to use NNs to perform structure learning. However, these 
methods state that the recurrent function must be a contraction mapping to assure 
convergence, and a penalty factor-based technique is used to also help with the convergence 
during the learning process. Several highlights of RGNN evolution include: 

• Due to computational hardware limitations, Sperduti and Starita (1997) and Micheli et al.
(2004) proposed structure-based learning on acyclic directed graphs.

• Sperduti and Starita (1997) extended the work to that of Scarselli et al. (2008), where the
RGNNs can be applied to different graph types, such as acyclic, cyclic, directed, and
undirected graphs. This method alternates the stage of node state propagation and the
stage of parameter gradient computation to minimize a training objective but is limited by the
contraction mapping requirement on the recurrent function.

• Gallicchio and Micheli (2010) proposed the Graph Echo State Network to improve the
accuracy issues reported by Scarselli et al. (2008). Such improved accuracy is achieved by
using a contractive state transition function to update the states during recurrent functions
updates.

• Dai et al. (2018) proposed an extension that helped the learning algorithms be scalable for
large graph problems using stochastic, steady-state embedding.

3.4.2 Convolutional Graph Neural Networks 

Convolutional GNN methods are slightly different than the RGNNs in the sense that each GNN 
layer uses different weights during the learning process. CGNNs can be primarily segregated 
into two types—spectral and spatial-based methods—depending on the how the convolution 
property is handled, as described below. 

• Spectral methods use the filters from a signal processing perspective where the convolution
step in the CGNNs is understood to be the process of removing noise from the graph
signals during the learning process (Shuman et al. 2013). Prior to the advent of popular
graph convolution networks (GCNs) in 2017, the signal processing domain had already
conducted research about how to perform graph learning and analysis based on a solid
mathematical foundation (Shuman et al. 2013) (Sandryhaila and Moura 2013) (Chen et al.
2015).

• Spatial methods aimed to create embeddings that preserved the global structure
information. However, they could not take semantic information into account. To address
this, spatial methods are introduced where they use not only the graph degree and
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Laplacian matrixes, but also the adjacency, features, and label matrixes in their learning 
process. Kipf and Welling (2016) proposed an approach that combined the spectral and 
spatial methodologies using the GCN. 

3.5 Generative Artificial Intelligence and Large Language Models 

With the advancements in ML techniques and computing resources, approaches based on big 
data have gained favor across various domains, gradually replacing traditional methods in 
addressing complex problems (Chen et al. 2019). However, these methods exhibit critical 
disadvantages: 

• AI-based approaches heavily depend on training models and sample size. For large
systems featuring high renewables penetration, the requirement for extensive training data
can result in significant costs (Kumar et al. 2023).

• Solutions derived from AI often stem from ANN models, making the evaluation of solution
quality challenging for system planners or operators. Additionally, it is difficult to incorporate
a planner’s opinion, knowledge, and experience into the AI-generated solutions without
undergoing the entire training procedure.

With the advancements in deep learning and natural language processing techniques, large 
language models (LLMs), including ChatGPT, have witnessed remarkable development and 
research interest. The past two years have seen remarkable development of large LLM, such 
as BERT and ChatGPT and their novel applications (Devlin et al. 2018). While LLMs were first 
developed for language prediction, they internally built a complicated knowledge representation 
of the world, including fundamentals of power system engineering, and showed emerging 
artificial general intelligence (AGI). 

Recent developments have enabled LLMs to learn and intelligently decide when and how to use 
external tools for business use cases. More recently, LLMs have been successfully augmented 
and applied to assist engineers and researchers in performing complex mechanical engineering 
design and chemistry experiments, which has inspired this work. A key capability of the 
ChatGPT model—which sets it apart from existing AI models—is its proficiency in 
understanding and processing user-provided instructions, resulting in contextually appropriate 
responses. In other words, users can offer comments and instructions for solutions generated 
by ChatGPT, leading to responses that closely resemble human-like interactions. This opens 
the potential possibility of using ChatGPT as an intelligent co-planner in power systems 
planning study. The power utility companies also see the potential of using ChatGPT and are 
exploring energy and utility enterprise use cases. 

One such example is from Ontario Power Generation and Microsoft; they implemented 
Microsoft 365 infused with AI capabilities and designed an AI-powered chatbot named 
ChatOPG. It functions as a digital personal assistant, supports employees on topics ranging 
from information technology to human resources, and benefits the staff with quick connection to 
essential information and a simplified process for planning. More importantly, LLMs and 
ChatGPT open the pathway for flexible integration of various AI/ML platforms and tools, which 
may benefit the deep dive of domain use cases by experienced engineers. 
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Table 1. A summary of different ML techniques used in power system applications. 

Category Power System Applications 
Supervised Learning • renewable energy forecasting

• power system stability analysis
• load forecasting
• fault diagnosis for transmission lines and distribution systems
• nonintrusive load monitoring
• power equipment fault diagnosis
• electricity market forecasting
• electricity theft detection
• false data injection detection
• power system security assessment
• power quality analysis
• power system state estimation

Unsupervised Learning • renewable energy data generation and analysis 
• power system stability analysis
• demand response
• load profiling
• nonintrusive load monitoring
• false data injection detection
• PMU data generation

Reinforcement Learning • power system control 
• demand response
• electricity market operation
• power system economic dispatch

Graph ML • power system fault studies, including transformer fault
diagnosis, fault location, fault detection and isolation, power
outage prediction

• time-series prediction, including solar power prediction, wind
power/speed prediction, and residential load prediction

• power flow estimation studies, including power flow
approximation, OPF, and optimal load shedding

• power system data generation, including scenario generation,
synthetic feeder generation

• many other grid-related topics, including coupled power and
transportation networks analysis, line flow control, distributed
energy resource control, safe methodologies for power grid
operations, synchrophasor applications, transient stability
assessment, network reconfiguration, and thermodynamic
modeling of generators

Large Language Model  An LLM (including ChatGPT) could be applied to utility enterprise-
level supports and planning, as well as engineering studies and 
customer services. It may serve as the entrance to the knowledge 
base of asset management, information technology, human 
resources, and more. 
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3.6 Safe, Secure, and Trustworthy Artificial Intelligence/Machine 
Learning for Grid Applications 

Emerging technologies present new opportunities and challenges with the wide adoption by 
practical applications—especially for those ground-breaking yet long-lasting technologies, such 
as AI/ML and others found in the utility sector. Assuring the safe, secure, and trustworthy AI/ML 
in power grid systems is paramount for the stability and reliability of our energy infrastructure. 
As these technologies play an increasingly pivotal role in optimizing grid operations, predictive 
maintenance, and fault detection, it becomes imperative to address the unique challenges 
associated with their implementation in critical infrastructure. 

To harness the potential of AI/ML technologies, it is crucial to develop, test, and improve the 
consensus among scientists, researchers, practitioners, policymakers, compliance, and law 
enforcement. This must occur throughout the full life cycle of technology adoption to establish a 
safe, secure, and trustworthy boundary. Drawing from the successful management of our 
electricity system, we can see how this experience can facilitate and accommodate the safe, 
secure, and trustworthy implementation of AI. 

In addition, following the landmark Executive Order signed by President Biden to advance 
agencies’ efforts across the federal government, the Executive Order directs the following 
actions: 

• New Standards for AI Safety and Security

• Protecting American’s Privacy

• Advancing Equity and Civil Rights

• Standing up for Consumers, Patients, and Students

• Supporting Workers

• Promoting Innovation and Competition

• Advancing American Leadership Abroad

• Ensuring Responsible and Effective Government Use of AI.

Each area above may impact and transform power systems management and operation, 
especially when aligned with the accelerated transition to 100 percent decarbonized energy 
production, transmission, distribution, and prosumer (producer-consumer) participation in the 
form of distributed energy resources and energy storage. 

By harnessing the AI/ML benefit and testing new technologies in a controlled environment, the 
DOE-OE AGM program supports building capacity and capability within the electric sector to 
analyze the electricity delivery system using big data, advanced mathematical theory, and high-
performance computing to assess the current state of the grid, mitigate reliability risks, and 
understand future needs. The following sections will layout the current landscape of AI/ML 
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applications in power systems, OE AGM program wide efforts in AI/ML domain, as well as 
provide a detailed analysis and examination from the risk perspective. 

In addition, worldwide efforts regarding AI related policy, regulation, and laws are underway. 
For example, the European Commission proposed its first EU regulatory framework for AI in 
2021, and the first AI act reached a deal between the Parliament and Council in December 
2023. A key proposal includes the following regulatory framework for four levels of risk of AI: 

• Unacceptable risk

• High risk

• Limited risk

• Minimal or no risk.

All the four levels may cover specific categories and groups of definitions centered around AI 
and perspectives covering human, data, model, user, market, governance entities are reflected. 

The evolution and iteration of AI/ML continues as one of the hottest topics in AGI. One of the 
definitions for AGI is from OpenAI: “AI systems that are generally smarter than humans—
benefits all of humanity”. To further clarify this concept, the Google DeepMind team published a 
research paper to introduce levels of AGI performance, generality, and autonomy (Morris et al. 
2023). A list of five performance levels of AGI is given as follows: 

• Level 1: Emerging

• Level 2: Competent

• Level 3: Expert

• Level 4: Virtuoso

• Level 5: Superhuman.

Utilizing the classification process and following the risk assessment regarding AI autonomy, 
especially the interaction between human and AGI, Google DeepMind team also proposed the 
following five levels of autonomy: 

• Autonomy Level 1: AI as a Tool

• Autonomy Level 2: AI as a Consultant

• Autonomy Level 3: AI as a Collaborator

• Autonomy Level 4: AI as an Expert

• Autonomy Level 5: AI as an Agent.

For the power grid, the reliability of AI/ML algorithms is crucial for power grid operations. The 
ML models must be resilient to various uncertainties and dynamic conditions inherent in the 
power grid environment. Rigorous testing and validation procedures are essential to assure that 
AI/ML models operate reliably under diverse scenarios, safeguarding the power grid stability. 
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As AI/ML systems become integral to power grid management, cybersecurity measures must be 
rigorously implemented to protect against potential threats. Securing data integrity, maintaining 
confidentiality, and preventing unauthorized access to critical AI models are critical. Assuring 
the transparency of these models is crucial for building trust among stakeholders. Clear 
communication of how AI/ML algorithms reach specific conclusions or make predictions, fosters 
confidence in their use and aids in decision-making processes for power grid management. 

In summary, a new paradigm is needed to be reached through collaborative efforts, and a 
consensus among scientists, researchers, practitioners, policymakers, compliance, and law 
enforcement, must be developed, tested, improved, and evolved along the full life cycle of 
technologies being adopted to establish the safe, secure, and trustworthy boundary. By 
providing a high-level purview of AI classification mechanism, as well as a deep dive into power 
system applications of AI/ML, the authors aim to build a foundational understanding for 
stakeholders and readers to reveal an exciting future where the clean energy transition 
harnesses all available technologies and there is a possible pathway forward to embrace 
challenges. 
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4.0 Power System AI/ML Applications in the Literature 
In recent years, numerous power system applications have undergone enhancements through 
AI/ML integration. Many publications delve into the exploration of these applications and their 
implications within the AI/ML domain. This section reveals a curated selection of power system 
applications that have been enhanced by the transformative capabilities of AI and ML. These 
applications are mainly focused on the transmission systems, covering grid monitoring, 
management, and planning. A selective list of publications is used as examples to illustrate the 
enhancements AI/ML techniques bring to these applications. 

4.1 Fault Detection/Protection 

Protection is a must-have function in power systems to assure personnel safety and avoid 
equipment damage. Traditional protection schemes mainly rely on commercial relays to issue 
tripping commands when certain preset thresholds are exceeded. However, it is sometimes very 
difficult to determine accurate thresholds because they usually depend on many factors, such 
as operating conditions, knowledge of equipment parameters, system transients, and fault 
types. The threshold settings represent the trade-off between protection sensitivity and security. 
Therefore, in practice, there are protection gaps in power systems and traditional relays cannot 
provide reliable or secure protections against faults or transients under certain circumstances. 
For example, the monitored measurements may resemble normal conditions when some fault 
happens. In this case, relays cannot detect this type of fault due to insufficient sensitivity. 
However, these faults, including transmission line high-impedance faults, transformer interturn 
faults, and minor circuit faults in distributed energy resources (mainly photovoltaic [PV]), are 
detrimental to the system. With recent development of more powerful computers, better 
measurement-acquiring devices, and better training algorithms, researchers are starting to 
explore the feasibility of using data-driven approaches to bridge the above-mentioned protection 
gaps in power systems. In their research, Cui et al. provide a method for extracting electrical 
features from high-impedance fault (HIF) currents, voltage signals, and building an effective 
feature set via a ranking algorithm (Cui et al. 2017). Therefore, only a small number of signal 
channels are required to build a statistical classifier for fault detection. Jiang and team also 
provide an effective method for reducing the huge volume of PMU data while retaining the 
critical information for fault detection in a power system (Jiang et al. 2016). Manohar’s work 
proposes a CNN-based protection scheme to discriminate between inverter faults in the PV 
system and symmetrical/unsymmetrical faults in the distribution line, in addition to 
detecting/classifying the faults and identifying the faulty section (Manohar et al. 2019). 

Gao and team implemented the RL-based algorithm, to improve the performance of doubly fed 
induction generator converters (DFIG) on wind turbines during grid fault conditions; a surrogate-
gradient-based evolution strategy is used to control the DFIG power and capacitor DC-link 
voltage by adjusting the optimal reference signals (Gao et al. 2022). Research by Jones and 
team shows that no communication is needed and there are additional benefits, such as high 
accuracy and the use of relays without settings, when the adopted SVM is embedded inside 
each relay to classify grid faults, determine tie line switch positions, and estimate fault locations 
(Jones et al. 2021). Research by Ojetola and team compared five ML techniques regarding DC 
microgrid fault classification, and identified that only the multilayer perceptron (MLP) algorithm 
achieves 99 percent classification accuracy when based on fault type and fault resistance 
(Ojetola et al. 2022). Research by Poudel explored the coordination of local adaptive modular 
protection (LAMP) units and other conventional relays; within LAMP, the paper utilizes SVM to 
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estimate the circuit topology, identify fault type, and detect fault zone with high accuracy.

Table 2. ML in fault detection. 

Reference ML Method Data Strength Shortcoming 
Cui et al. 2017 Bayes 

Networks and 
Support 
Vector 
Machine 
(SVM) 

Six different 
distribution 
systems with 
1944 HIF 
events 

High accuracy of HIF 
detection. 

The method is not 
adaptive; it is conducted 
for each and system 
separately with different 
training and testing sets. 

Jiang et al. 
2016 

Hidden 
Markov 
models 
(HMMs) and 
ANN 

IEEE-39 bus 
and IEEE-
118 bus 
simulation 
data 

• Provides substantial
data volume
reduction.

• Keeps
comprehensive
information from
PMU measurements
in spatial and
temporal domains.

Only tested on synthetic 
PMU datasets, and the 
test systems are small. 

Manohar et al. 
2019 

Convolutional 
neural 
network 
(CNN) 

Measureme
nts from 
microgrids in 
OPAL-RT 
digital 
simulator 

• Outperforms
decision tree (DT)
and SVM-based
methods.

• Validated in
hardware in the loop
platform.

• A limited number of
different power flow
scenarios are tested.

• Not adaptive to
different microgrid
configurations.

Liao et al. 
2020 

CGNN with 
self oops in 
convolution 

Fault 
dataset from 
real-world 
state 
corporation 
of China 

• Considers structure
and semantic
information.

• Considers self-loops
in convolution 
layers. 

Accuracy depends on 
data volume and difficulty 
to obtain real-world 
transformer fault data. 

de Freitas and 
Coelho 2021 

Gated GNNs Ten real 
distribution 
systems 
from 
CEMIG, the 
state of 
Minas 
Geraisa in 
Brazil 

• Model performs well
for an unseen
feeder data during
training.

• In-depth
understanding of
fault localization
domain knowledge
for validating ML
techniques.

Architecture’s limitation 
to achieve best learning 
as it requires more hyper 
parameter tuning, better 
pooling techniques, and 
attention mechanism. 
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Reference ML Method Data Strength Shortcoming 
Khorasgani et 
al. 2019 

Spectral-
based CGNN 

Water tank 
component 
dataset 

• Method explains its
relationship to
power grids as
industrial network
component analysis.

• The results are only
shown on water tank
component network.

• Computationally
expensive due to
Eigenvalue
decomposition.

Fan et al. 2020 Spectral-
based CGNN 

PVWatts 
National 
Renewable 
Energy 
Laboratory 
(NREL) 
dataset with 
nine 
features per 
node and 
five graph 
labels 

Benchmarking with 
other methods, such as 
K-nearest neighbor
classifier, random forest
classifier, SVM, and
ANNs.

The adaptability 
performance is not 
demonstrated. 

Owerko et al. 
2018 

Spectral-
based CGNN 

Weather 
data of New 
York City; 
power 
outage data 
obtained 
from EIA 
Electric 
Power 
Monthly 

Showcases different 
parameters can improve 
the prediction accuracy 
over a baseline 
implementation. 

• The proposed
method may only
work for selective
weather-induced
power outage
prediction problems.

• Feature selection is
not complete for
power outage
prediction.

Gao et al. 
2022 

Reinforcemen
t Learning 

Grid-
connected 
DFIG 
system in 
PSCAD 

Better repeatability and 
adaptivity for DFIG 
control interface; 
improve DFIG rotor 
over-current and DC-
link over-voltage. 

• Needs larger network
model testing.

Jones et al. 
2021 

SVM IEEE 123-
bus feeder 

High accuracy 
(selectivity and 
sensitivity) as 
distributed manner. 

• Requires further
testing under
distributed energy
resources (DER)
scenarios and active
reconfiguration.

Ojetola et al. 
2022  

Supervised 
Learning, 
comparing 
SVM, 

ETL-KAFB 
DC 
Microgrid 
model 

Significant data and 
comprehensive 
Comparison among five 
ML methods. 

• Limited fault type,
small network model
and testing system.
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Reference ML Method Data Strength Shortcoming 
Bernoulli NB, 
DT, NC, MLP 

Poudel et al. 
2022 

SVM IEEE 123-
bus feeder 

LAMP can be setting-
free, estimate circuit 
topology, identify fault 
type, and detect fault 
zone. 

• Small network model
and testing system.

4.2 State Estimation 

Power grids are being challenged by rapid and sizable voltage fluctuations caused by the large-
scale deployment of renewable generators, electric vehicles (EVs), and demand response 
programs. In this context, monitoring the grid’s operating conditions in real time becomes 
increasingly critical. With the emergent large-scale and nonconvexity, existing power system 
state estimation schemes may become computationally expensive or often yield suboptimal 
performance. By exploiting valuable information from abundant real-time and historical data, 
data-driven approaches hold promise to significantly enhance monitoring accuracy and improve 
the performance of state estimation. To that end, Manitsas and team have used NN approaches 
to estimate the bus injections from the real-time measurements (Manitsas et al. 2012). The 
estimated bus injections can be used as pseudo-measurements to compensate for the scarcity 
of real-time measurements. In addition, plain feed-forward NNs were proposed to estimate the 
power grid state from the measurements (Barbeiro et al. 2014). This approach reduces the 
complexity of the state estimation task to matrix-vector multiplications by shifting the 
computational burden to an offline training stage using historical or simulated data. However, it 
is often challenging to avoid exploding or vanishing gradients while training these feed-forward 
NNs, and thus the provided estimates are less accurate than any optimization-based approach. 
A joint optimization/learning approach was proposed where the key is to learn to initialize a 
Gauss-Newton solver (Zamzam et al. 2019). This entails a special design of the learning cost 
function, but in turn a shallow NN suffices to learn to initialize, keeping sample complexity and 
run-time complexity low, while benefiting from the high accuracy of the properly initialized 
Gauss-Newton solver. Zhang and team devised a learning approach where a DNN is 
constructed by unfolding an iterative solver for the least-absolute-value formulation of the state 
estimation problem (Zhang et al. 2019). All past learning models for state estimation overlook 
the physics of the underlying distribution network, hence leading to over-parameterization of the 
mapping from the measurements to the network states (Zamzam and Sidiropoulos, 2019). 

In Zhang’s work, a DNN was applied to predict full AC power flow models and active learning 
with informative instances and sampling strategies were tested and evaluated to resolve data 
imbalance issues, especially for high-dimensional data and available samples (Zhang et al. 
2019). Khazeiynasab and team proposed a conditional VAE for PMU data-based model 
parameter calibration, which is targeted for a synchronous generator, including machine model, 
governor, exciter, and power system stabilizer model for turning two parameters or eighteen 
parameters (Khazeiynasab et al. 2022a). Kurup and team applied DNN and SVM for power 
distribute systems topology estimation and fault detection, it is observed that DNN outperforms 
SVM in topology estimation, and additional fault detection prior to the fault classification might 
be helpful to lower the overall test error (Kurup et al. 2021). Garcia and team identified that SVM 
with a linear kernel function performs better in power distribution network circuit topology 
estimation, compared with logistic regression as well as SVM with other kernel functions (Garcia 
et al. 2022). 
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Table 3. ML in state estimation. 

Reference ML Method Data Strength Shortcoming 
Manitsas et al. 
2012 

ANNs • 95-bus
distribution
model

• Half-hourly
active power
load profiles
over 1 year

Better quality for 
generating pseudo-
measurement compared 
with average load 
profiles. 

Only works well 
for small-size 
medium voltage 
networks and 
experiences 
issues when 
scaled. 

Barbeiro et al. 
2014 

Autoencoder
s 

Low voltage 
(LV) network
with 57 buses

Accurate when a large 
historical dataset exists. 

Only works well 
for small-size LV 
networks and 
experiences 
issues when 
scaled. 

Zamzam et al. 
2019 

Shallow NN IEEE 37-node 
distribution 
feeder 

Obtains a better 
initialization point 
through shallow NN. 

Only works well 
for small-size LV 
networks and 
experiences 
issues when 
scaled. 

Zhang et al. 
2019 

Deep neural 
network 

IEEE 57-bus 
system 

IEEE 118-bus 
system 

Easy-to-train and 
computationally 
inexpensive. 

Not tested on 
large 
transmission 
networks and 
experiences 
issues when 
scaled. 

Zhang et al. 
2022 

Deep neural 
networks 

IEEE 39-bus 
system, NPCC 
140-bus system

Under sampling strategy 
to resolve data 
imbalance between 
unsolvable and solvable 
samples; actively select 
most informative 
instances. 

Testing accuracy 
is around 90%; 
further 
improvement is 
needed. 

Khazeiynasab 
et al. 2022a 

Conditional 
variational 
autoencoder 

PSS/E and 
Pacific 
Northwest 
National 
Laboratory 
(PNNL) PMU 
data 

Robustness showing for 
two-parameter tuning 
and 18-parameter 
turning scenarios; 
tolerate parameters out 
of the prior distribution. 

Testing is limited 
to selected 
generator 
dynamic model. 
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Reference ML Method Data Strength Shortcoming 

Kurup et al. 
2021 

Convolutional 
neural 
network, 
SVM 

IEEE 123-bus 
feeder 

Compared CNN with 
SVM and demonstrates 
significant topology 
estimation performance 
margin.  

False alarm rate 
is higher in four-
class SVM fault 
detector 
compared to than 
three-class SVM 
fault detector.  

Garcia et al. 
2022 

Logistic 
regression, 
SVM 

IEEE 123-bus 
feeder 

High accuracy for 
classifying the prevailing 
circuit topology; low 
impact by data noise. 

Small test 
systems. 

4.3 Asset Management, Predictive Maintenance, and Health 
Monitoring 

Adequate monitoring of the health condition of electrical equipment and predictive maintenance 
are vital to minimize downtime and assure reliable power system operations through data 
collection and analysis algorithms. In a typical power system, many sensors and monitoring 
systems are installed to collect data, and gradual changes are analyzed. However, because of 
the complexity of recorded data, defects or faults at an early stage cannot be easily recognized. 

He and team conducted a comparative analysis of three neural network modeling techniques—
static neural networks, temporal processing neural networks, and recurrent neural networks—
for predicting the top-oil temperature of transformers (He et al. 2000). Their study indicates that 
the recurrent neural network model outperformed the others in terms of both mean squared 
errors and peak error. 

Zhao and team propose taking advantage of high-level discriminative CNNs to extract the 
features of the insulators and identify their defects (Zhao et al. 2016). The experimental results 
show that the proposed method can achieve an accuracy of 93 percent. When considering 
unlabeled oil chromatography online-monitoring data before power transformer failure happens, 
traditional diagnosis methods often fail to fully utilize unlabeled samples when assessing 
transformer health conditions. 

Shi and Zhu propose a power transformer health condition monitoring method based on a DNN 
(Shi and Zhu 2015). A large amount of unlabeled data from oil chromatogram online monitoring 
devices and a small number of labeled data from dissolved gas-in-oil analysis are fully used in 
the training process. Testing results indicate that the diagnosis performance is better than three 
other methods based on radio, back-propagation NN, and SVM. In their research, Zhao and 
team review and summarize the emerging research work of deep learning on machine health 
monitoring into four categories based on deep-learning architecture, including autoencoder 
models, restricted Boltzmann machines models, convolutional NNs, and RNNs (Zhao et al. 
2019). In summary, deep learning is one effective means for monitoring the health condition of 
power grid devices and the above-mentioned references prove this. 

However, some problems need to be resolved, such as how to solve the small sample learning 
problems, how to identify the small differences between normal conditions and pre-faulted 
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conditions, and how to satisfy the need for real-time defects identification. Zhao and team also 
give research trends and potential future research directions for applying deep learning for 
power grid device health condition monitoring: (1) open-source large dataset; (2) use of domain 
knowledge; (3) transferred deep learning; and (4) imbalanced data and class issue (Zhao et al. 
2019). 

Table 4. ML in predictive maintenance. 

Reference ML Method Data Strength Shortcoming 
He et al. 
2000 

Static neural networks, 
temporal processing 
neural networks, 
recurrent neural 
networks (RNN) 

Top-oil temperature, 
load and ambient 
temperature of 
distribution 
transformers 

Achieves good 
performance with 
a comparison. 

May have 
overfitting issue 
is the model is 
too complex. 

Zhao et al. 
2016 

CNN Field insulator 
measurements 

Achieves good 
accuracy. 

Need large 
amount of 
labeled 
historical data. 

Shi and 
Zhu 2015 

DNN Oil chromatography 
online-monitoring 
data 

Better 
performance than 
back-propagation 
NN and SVM. 

May have 
overfitting 
issue. 

Zhao et al. 
2019 

Autoencoder, 
convolutional neural 
network (CNN), 
recurrent neural 
network (RNN) 

Field measurement 
from machine 
sensors 

Achieves good 
performance and 
accuracy. 

Need large 
amounts of 
labeled 
historical data. 

Sun et al. 
2022 

Graph attention 
networks 

Generated by 
simulation of three 
S-CO2 power
systems in
MATLAB

Surrogate 
representation of 
thermodynamic 
generator model. 

Limited system 
types in paper. 

4.4 Transient Stability Analysis 

There are three broad classes of methods for transient stability analysis or assessment (TSA): 
time-domain simulation, the direct methods, and data-driven or AI-based methods. 

The conventional and most accurate method is time-domain simulation; however, this approach 
is especially time consuming for large-scale power systems which basically prevents it from 
being used for real-time operation applications. To overcome the time burden, direct methods, 
(e.g., energy function, extended equal area criterion [EEAC], etc.) were proposed. However, 
these methods work only for simplified modeling of the system dynamics. 

In light of the challenges with the analytical-based approaches discussed above, ML-based 
approaches were first proposed in the early 1980s to make TSA fast enough for real-time 
operation and applicable for large-scale power systems (Sa Da Costa 1982). 
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Sa Da Costa was amongst the earliest attempts in this field in the 1980s when applying a 
pattern-recognition approach TSA (Sa Da Costa, 1982). And then in 1989, Sobajic and Pao 
applied an ANN-based approach for TSA (Sobajic and Pao 1989). These methods only tackled 
the part of problem of assessing the stability of power systems. Another part of the problem is 
providing or suggesting remedial control actions whenever needed. Wehenkel et al. introduced 
using DTs as an inductive inference method for TSA (Wehenkel et al. 1989). The DT-based 
method automatically built decision rules in the form of binary trees, which are basically 
hierarchical representations of relationships between static, pre-fault operating conditions of a 
power system and its robustness to withstand assumed contingencies. The rules can be applied 
to online TSA. In the early 1990s, a practical feasibility study of this DT-based TSA method was 
carried out on the French electric high-voltage power system comprising 561 buses, 1,000 lines, 
and 61 generators (Wehenkel et al. 1994). 

These studies represent the early exploration of AI, and only a limited number of AI approaches 
were considered which focused on ANN and DT. The scale of the systems to which these 
approaches could be applied were limited, mainly due to computing power and memory 
limitations. However, these early efforts demonstrated the potential of AI for addressing TSA 
problems and thus ignited interest from many researchers. 

In the early 2000s, different AI techniques were developed to leverage available measurements 
in the control room used to enhance TSA. Del Angel and team used ANN to estimate rotor 
angles and speeds from phasor measurements for transient stability assessment and control in 
real time (Del Angel et al. 2003). While Sun and team used ensembles of ANNs for transient 
stability prediction (Sun et al. 2007). Yu and team leveraged the recent ML developments in 
LSTM to learn the temporal data dependencies of the input data and balance the trade-off 
between assessment accuracy and response times to achieve a temporal self-adaptive TSA 
scheme (Yu et al. 2018). Another recent breakthrough for CNNs was used by Yan and team to 
achieve fast TSA (Yan et al. 2019). Research by Zhou and team used an ensemble of CNNs to 
predict TSA results while considering errors in measurements and operational variability (Zhou 
et al. 2019). 

Pan and team observed and showed that 1D-CNN is better in post-fault transient response 
prediction of bus voltage compared to LSTM; nodal voltage and nearby line currents are inputs, 
and the proposed 1D-CNN approach doesn’t require turning integer hyper-parameters (Pan et 
al. 2018). To further improve the computational efficiency and improve the power grid post-fault 
voltage prediction, Zheng and team leveraged group Lasso regularization for encoder/decoder 
transformer architecture, namely GLassoformer, and showed a reduced error rate compared to 
1D-CNN and other methods (Zheng et al. 2022). Zhao introduced a deep Koopman inference 
network (DKIN) which is a conditional VAE-like structure with an embedded Koopman layer 
(Zhao et al. 2023). Both a synchronous machine and inverter-based-resource were tested and 
show consistency in fault conditions. It is expected that as a linear and low-dimensional 
operator, the Koopman operator is more suitable for online implementation. Moya and team also 
developed automated uncertainty quantification (UQ) for a deep operator network (DeepONet) 
and used it to support a power system post-fault trajectory. Two methods were proposed to 
quantify the uncertainty—one is a Bayesian framework and the other is a probabilistic one—and 
both use DeepONet and provide confidence interval as part of the results. The DeepONet-
based method was explored to approximate the local solution operator of a synchronous 
generator (SG); such a trained model shows potential to serve as individual component that 
interacts with the overall grid through by a data aggregation algorithm (Moya et al. 2023a). 
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Roberts and team proposed continuous-time echo state networks to predict power system 
dynamics and overcome the stiffness-related challenges shown in physics-informed NN and 
LSTM. Continuous-time echo state networks is one type of RNN which was further improved by 
the nonlinear projection method, called radial basis function (Roberts et al. 2022). 

In addition, GNN and spatial-temporal learning provide new perspectives for power systems 
transient stability analysis. For example, Nandanoori proposed the combination use of a GNN 
and Koopman models to formulate a Spatial-Temporal graph convolutional neural network, 
which showed a satisfactory temporal and spatial accuracy in the PMU data training and testing 
(Nandanoori et al. 2022). Zhao and team used deep-learning neural representation based on a 
GNN to learn both the network topologies dependency and generator dynamics and to test the 
accuracy of grid events, including load variation, topological change, and transient contingency 
which are more than 98% (Zhao et al. 2022). Sun and team adopted deep graph operator 
network, called DeepGraphONet, which is used to predict power system transient contingency 
trajectories. DeepGraphONet allows for unique exploration of zero-shot learning and extended 
testing of new sub-graphs; additional flexibility is also demonstrated due to the resolution-
independent design (Sun et al. 2023). 

Lastly, it is important to understand control features and derive proper actions, especially when 
power system transient behavior triggers protection relay and schemes and such actions could 
be considered as part of grid emergency control to improve system frequency and voltage 
profile. Li and team utilized multinominal logistic regression to evaluate the interrelationship 
among continuous and discrete control features using a full year of SCADA data from a Western 
Electricity Coordinating Council (WECC) system (Li et al. 2019b). Tan and team utilized a 
Bayesian NN to identify feature relationship in the form of gradient SHAP (Shapley Additive 
exPlanations) and shapley value, the variation of wind farm output and related voltage are 
visible and therefore explainable by this method (Tan et al. 2022). Research by Zhang and team 
proposed DRL with an off-policy soft actor-critic architecture to improve the actions and possible 
impacts of a power system under a voltage load shedding scheme. Using this method, they 
observed higher adaptivity and efficiency compared with a traditional fixed-parameter setting 
and DQN-based methods (Zhang 2023). In their research, Su and team adopted DNN and 
implemented proactive control in the form of transient stability constrained optimal power flow 
(OPF). Therefore, the new dispatch may resolve potential transient stability issue, such as rotor 
angle stability (Su et al. 2024). Ye and team utilized Gaussian process (GP)-based learning 
approaches improved with sparse and variational techniques to resolve the scalability issue. 
Testing with a 2,000-bus system and a combination of different generator dynamic models show 
good scalability and feasibility of UQ (Ye et al. 2023). Huang and team proposed using DRL 
with a parallel augment random search (PARS) for large-scale grid emergency load shedding to 
overcome the scalability issue and make implementation more adaptive and flexible. Under 
these conditions, the learning speed almost scales linearly with the number of used CPU cores. 
Compared to when only using conventional thyristor controlled series compensators (TCSC) 
power oscillation damping controllers, performance is better when using RL applications with a 
natural evolution strategy to control TCSCs in the power systems transmission network to damp 
inter-area oscillation with TCSC’s fast responding nature (Huang et al. 2022a). Verzi and team 
utilized DQN and a group of grid stability index to navigate in multi-dimensional generator 
control space and explore feasible and stable trajectory of power system dynamics. Under these 
circumstances, the trained RL agent can achieve close performance to the greedy agent, which 
combines information about its potential rewards completely to form its decision policy in DQN 
(Verzi et al. 2022). 
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One special topic of power system emergency response and protection schemes is a remedial 
action scheme (RAS)—also known as special protection scheme (SPS). Research by Fan and 
team has been granted a U.S. patent in 2021, for an end-to-end RAS design and evaluation 
method, which utilized logistic regression and ANN. A featured importance evaluation process 
was also proposed to assess and further reduce controller inputs (Fan et al. 2021). Research by 
Zhao used DNN to estimate system frequency and load behavior during grid emergencies and 
RAS action process, and a customized loss function was developed to reflect conservative 
design regarding under-frequency load shedding impacts (Zhao et al. 2021). Moreover, all were 
using full-size WECC models and data (Dong et al. 2023). 

Table 5. Selected recent ML applications in transient stability analysis. 

Cited 
Work ML Method Data Strength Shortcoming 

Sun et al. 
2007 

Ensemble of 
NNs 

PSB4 and New 
England 39-bus 
test systems; 248 
samples and 300 
samples 
respectively 

Overcomes the errors of 
using only one model, 
such as DT or NN for 
prediction. 

Faces scalability or 
curse of 
dimensionality 
issues because it 
requires training of 
m(m − 1)/2 NNs for 
systems with m 
generators. 

Yu et al. 
2018 

DTs with a 
new 
classification 
method 
involving 
each whole 
path of a DT 
instead of 
only 
classification 
results at 
terminal 
nodes 

Cases: 2,100-bus, 
2,600-line, 240-
generator 
operational model 
of the Entergy 
system 

• Online TSA.
• Able to identify key

security indicators and
give reliable and
accurate online
dynamic security
predictions using PMU
data.

• Only considers
the snapshot of
the system, not
the time-series
trend.

• Not flexible to
handle system
topology
changes.

Yan et al. 
2019 

LSTM 
network 

• Cases: New
England 39-bus
system, 162-bus
system, 145-bus
system

• Input: PMU
measurements
(i.e., voltage
magnitude and
angles,
maximum angle
deviation data)

• Extracts both spatial
and temporal data
dependency from the
input power system
state for security
assessment.

• Time-adaptive.

• Assumes PMU
measurements
have a
sufficiently wide
coverage of the
system.

• Assumes all the
PMUs are always
available.
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Cited 
Work ML Method Data Strength Shortcoming 

Zhou et al. 
2019 

CNN 
ensembled 

• Cases: New
England 39-bus
system;
Northeast Power
Coordinating
Council (NPCC)
48-machine
140-bus system

• Input: generator
relative rotor
angle, speed,
acceleration,
etc.

• Can process multi-
dimensional data
directly and provides
accurate prediction
even under certain
measurement errors.

• Can update the
classifier using only a
few labeled instances.

When the operating 
conditions change 
substantially, the 
trained model must 
be updated, but no 
network topology 
information was 
considered in the 
input data. 

Yu et al. 
2019 

GAN and 
graph 
representatio
n learning 
(combination 
of GCN and 
LSTM) 

The New England 
10-machine
system, Nordic
system, Iceland
network system

Learn from both the 
graphical (network) and 
temporal characteristics 
of the power system 
dynamics. 

Large graph size 
computation. 

Huang et 
al. 2020 

Graph 
representatio
n learning 
(combination 
of GCN and 
LSTM) 

IEEE 39, 300-bus 
systems 

Spatiotemporal multi-task 
prediction for stability 
classification and critical 
generator identification. 

Large graph size 
computation. 

Qin and Yu 
2023 

CGNN 119-bus
distribution feeder
and hourly kWh
data for 5,567
households in
London

Formulation of topology 
reconfiguration problem 
as a link prediction 
problem. 

• Combinatorial
problem in
dataset.

• Generation and
the method relies
on large dataset.

Guddanti et 
al. 2022 

CGNN IEEE 14, 118-bus 
systems, and 
synthetic data 
generated from 
real-world 
European grid. 

No need to re-train to 
predict unseen data 
scenarios. 

• Large graph size
computation.

• Requires custom
message passing
equation.

Hossain et 
al. 2021 

CGNN Data is generated 
from Alliander’s 
grids for up to 40 
years in advance. 

The model performs well 
for specific scenarios that 
it is trained on. 

Difficult to extend to 
unseen scenarios. 

Luo et al. 
2021 

Spatial-
temporal 
graph 
convolutional 

Samples of 
Guangdong Power 
Grid generated by 

Results demonstrate 
higher assessment 
accuracy and better 
robustness and 

Does not capture 
the spatial 
information, like 
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Cited 
Work ML Method Data Strength Shortcoming 

network (a 
combination 
of 
Chebyshev 
filter, Gate 
linear unit 
(GLU), 1-D 
Convolution) 

PSD-BPA 
software. 

adaptability than 
conventional methods. 

message passing 
networks. 

Zhong et 
al. 2022 

GAN • New England
39-bus system,
IEEE 300-bus
system.

• PSD-BPA is
used for
generation of
data.

Multivariate stability 
indices prediction for 
each bus and adapts to 
minor topological 
changes. 

Large grid 
validation and 
topology change 
impact study. 

Hu et al. 
2022 

CNN 16-generator 68-
bus model

Compared performance 
with current-only or 
voltage-only input shows 
better performance than 
Prony method for post-
fault scenario. 

Small testing case; 
scalability needs to 
be verified. 

Zheng et 
al. 2022 

Encoder-
decoder 

16-generator 68-
bus model

The proposed 
GLassorformer has 
better prediction 
accuracy, is smaller by 
parameter size, and has 
faster inference speed. 

Small testing case, 
scalability needs to 
be verified. 

Zhao et al. 
2022 

Graph NN IEEE 39-bus 
system and 300-
bus system 

Predicting dynamic 
trajectory based on real-
time measurements. 

• Training data
preparation for
high-quality
dynamic
simulation.

• Extendibility/trans
ferability needs to
be assessed.

Zhang et 
al. 2023 

RL Two-area four-
machine model, 
16-generator 68-
bus model

Improve performance 
efficiency and voltage 
constraint satisfaction 
under transient voltage 
recovery criteria; faster 
convergency of reward. 

Small testing case. 

Sun et al. 
2023 

Graph NN 16-generator 68-
bus model

Good accuracy, flexible 
for discrete input function 
representation with 
arbitrary resolution, 

Small testing case; 
computational 
efficiency unknown. 
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Cited 
Work ML Method Data Strength Shortcoming 

transferable and 
achieves zero-shot 
learning. 

Zhao et al. 
2023 

Encoder-
decoder 

IEEE 68-bus 
system 

A combined structure 
with multiple NN 
modules, provide high 
accuracy in linear 
approximation for high-
dimensional nonlinear 
dynamic behavior; 
online. 

Small testing case. 

Moya et al. 
2023a 

DNN 16-generator 68-
bus model

Defines metric for 
prediction uncertainty; 
reliable prediction 
reduces false-negative 
alarms. 

Small testing case; 
computational 
efficiency unknown. 

Moya et al. 
2023b 

DNN Single generator 
infinite bus model 

High accuracy with use 
of data aggregation 
algorithm; incorporating 
mathematical model 
through residual model 
design. 

• Minimal example.
• Further testing

with network
model and a
multitude of units
are needed.

Roberts et 
al. 2022 

Echo state 
network, 
RNN 

IEEE 14-bus 
model, and WSCC 
9-bus variations
(up to 144 Bus)

High accuracy; good 
speedup in execution 
time. 

• Small test case;
relative.

• Simple network
condition.

Tan et al. 
2022 

DNN IEEE 39-bus 
system 

• Improved accuracy in
stability assessment.

• Gradient SHAP is used
to explain the trained
NN model and the
features.

Small test case. 

Su et al. 
2024 

DNN IEEE 39-bus 
system, South 
Carolina 500-bus 
system 

• Better performance
than heuristic
algorithms.

• Provide preventive
strategy with
improvement in
convergency and
iteration time.

Ye et al. 
2023 

DNN IEEE 118-bus 
model and 
synthetic Texas 
2000-bus systems 

Physics-informed sparse 
Gaussian process is 
proposed to improve 
computation efficiency 

The robustness of 
online application 
may be impacted 
by data quality. 
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Cited 
Work ML Method Data Strength Shortcoming 

and be scalable for large 
network. 

Zhao et al. 
2021 

DNN WECC 240-bus 
system model by 
NREL 

Improved performance 
for adaptive RAS with 
customized loss function 
to avoid complication due 
to under-frequency load 
shedding. 

Limited testing; 
requires other RAS 
examples. 

Dong et al. 
2023 

Random 
forest and 
ANN 

WECC full-size 
model 

Significant speedup for 
stability prediction using 
frequency nadir and 
critical clearing time 
(CCT) values. 

Sample case from 
utility energy 
management 
system (EMS) may 
have issues and 
requires further 
tuning before used 
to generate training 
data. 

Li et al. 
2019b 

ANN Utility SCADA 
data, WECC full-
size model for 
specific RAS 

• Feature analysis for
continuous and
discrete variables.

• Feature assessment
and reduction used for
RAS control.

Limited testing 
requires other RAS 
examples. 

Fan et al. 
2021 

ANN, MLP WECC full-size 
model for specific 
RAS 

• Practical sampling
process for large
network model.

• Control feature
analysis and
assessment.

• Comprehensive
scenario and fault
simulation.

Limited testing 
requires further 
hardware and/or 
hardware-in-the-
loop testing. 

Nandanoori 
et al. 2022 

Spatio-
temporal 
graph NN 

IEEE 68-bus 
system 

The proposed STGNN is 
compared with Koopman 
operator theory enabled 
dynamic model 
decomposition, showing 
good performance for 
load change induced 
system responses. 

• Longer
observation
window for
STGNN leads to
better prediction
results,

• No scalability
testing with larger
network model.

Huang et 
al. 2022a 

Reinforceme
nt learning 

Two-area, four-
machine model 
and miniWECC 
model 

Improving the damping 
control performance. 

• Testing single
RL-based
controller.
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Cited 
Work ML Method Data Strength Shortcoming 

• Additional testing
regarding
scalability and
multi-controller
coordination is
needed.

Huang et 
al. 2022b 

Reinforceme
nt learning, 
DQN 

IEEE 39-bus 
system and 300-
bus system 

Derivative-free DRL is 
more robust against the 
exploding gradient issue; 
highly scalable and 
parallelizable. 

Needs to be 
investigated to 
solve safety- and 
robustness-related 
issues. 

Verzi et al. 
2022 

Reinforceme
nt learning, 
deep Q 
network 

Three-machine, 
Nine-bus model in 
power system 
toolbox 

• Combination of
different grid stability
metrics when
formulating reward
policy.

• Acceptable
performance when
comparing to greedy
method.

Need to verify small 
test system 
scalability. 

All these reviewed methods focused on conventional transient stability (angle stability), while 
frequency and voltage stability have barely been considered. 

4.5 Contingency Analysis 

Contingency analysis is one integral part of power system security assessment. It is used to 
assess a power system’s capability to sustain essential element failures, such as loss of a 
single critical component (i.e., N -1 contingency), or more components (i.e., N - k contingency). 
Typical components include a generator, transmission line, or transformer. It is a safety 
measure to help prevent widespread outages and maintain the stability of the electrical network 
and has a role in both planning and operational planning domains. 

Currently, contingency screening in a control room usually evaluates deterministic N -1 
contingency via linearized direct current power flow, which has been implemented with fast 
enough computational speed for operational needs. However, a broad sense of contingency 
analysis could be easily extended to N - k multiple contingency analysis or cascading failure 
analysis. This discretized analysis scenarios grows significantly for a large interconnection, 
which poses an enormous challenge for intelligent real-time contingency identification to grid 
operators—not to mention the operation uncertainties under the trending renewable paradigm, 
such as wind/solar generation variations and potential impacts from demand response. 

With the evolutionary application of ML and worldwide burst of computational power, many 
researchers have dived into contingency analysis by introducing high-performance computing 
(HPC) techniques and ML and AI concepts. More specifically, the combination of HPC and AI 
techniques can effectively provide solutions in the broad sense of contingency analysis for 
which more traditional methods are ineffective or intractable, especially for large real systems. 
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Research by Chen and team proposes an ANN model-based methodology for power system 
contingency analysis (Chen et al. 2019). The methodology can more effectively assess the 
system’s vulnerability level under contingencies and propose potential remediation and 
restoration strategies. An advantage of the proposed method is that it is physical-model-free. It 
does not require a complicated mixed-integer optimization solution process, but it can quickly 
provide solutions that are unavailable using commercial tools. This feature gives operators and 
engineers greater flexibility in enhancing grid reliability and resiliency. 

Alternatively, Du et al. consider a scenario tree representing power system uncertainties during 
real-time operation, followed by a NN model that could be trained through either supervised 
learning with historical measured data or RL with offline simulations. This methodology could 
potentially skip the traditional power flow analysis for every system state for contingency 
ranking; therefore, the trained DNN will output severity evaluation results to support the 
decision-making process of grid operators (Du et al. 2019). 

On the other hand, multi-contingency clustering is another direction in which researchers are 
applying AI techniques. Fuzzy classification techniques have been applied to select the most 
proper numbers of security clusters, but this classification method is limited to specific system 
topologies because the training is done offline (Matos et al. 2000). Other classification methods 
including particle swarm optimization and multiclass support vector machines can also be used 
for feature extraction and contingency classification (Kalyani and Swarup 2011). 

Note that for both contingency evaluation and contingency clustering, the security index is the 
target output. As a result, each contingency is classified with a qualitative label, such as 
“secure” and “insecure,” otherwise a composite quantitative index considering system violations 
will be derived. For example, Srivastava and her research group have contributed several works 
on voltage contingency ranking, using ANN along with numerous improved methods (Jain et al. 
2003). 

Table 6. ML in contingency analysis. 

Reference 

ML Method for 
Contingency 

Analysis Data Strength Shortcoming 
Chen et al. 
2019 

ANN for contingency 
ranking and optimal 
corrective action is 
recommended. 

IEEE 118-bus 
system and 
PNNL 563-
bus system 

• Physical-model-free
overcomes the
limitation on mixed-
integer programming
due to generator
switching on/off.

• Leverages the high-
performance computing
-enabled Massive
Contingency Analysis
tool.

No topology 
information is 
used. 

Du et al. 
2019 

DNN for bus voltage 
estimation and 
contingency 

IEEE 9-, 30-, 
57-, 118-bus 
systems and 
181-, 300-, 

• Data-driven.
• More than 100x

speedup with good
classification accuracy.

Only uses 
limited 
information in 
the reactance 
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Reference 

ML Method for 
Contingency 

Analysis Data Strength Shortcoming 
screening; no 
ranking. 

1,354-bus 
systems 

matrix; no 
topology 
information is 
used. 

Matos et al. 
2000 

Fuzzy classification 
for multi-contingency 
clustering. 

Hellenic grid 
and 240-bus 
system 

Contingency clustering for 
each contingency and 
then global aggregation. 

Limited to 
specific 
topology. 

Kalyani and 
Swarup 
2011 

Support vector 
machine for feature 
extraction and 
contingency 
classification. 

IEEE 39-bus 
system 

• Multiclass classification
through error-correcting
output codes.

• Multiple meta-heuristic
methods tested.

Small system; 
limited to 
specific 
topology. 

Jain et al. 
2003 

Radial basis NN for 
contingency ranking 
on voltage violation. 

IEEE 14-, 30-
bus system 
and Indian 
system with 
75 buses 

Input feature selection. • Limited to
specific
topology.

• Only relies
on voltage
metric.

4.6 Renewable Energy and Load Forecasting 

Abundant and environment-friendly renewable energy sources (RES), such as wind and PV 
energies, are expected to be the dominant energy source for the next generation of the power 
grid. However, their intermittent characteristics are obstacles for stable, large-scale utilization. 
To address these challenges and achieve improved dispatch planning, maintenance scheduling, 
and regulation, an accurate and reliable RES forecasting approach has become the focus of 
researchers around the world (Zhang et al. 2018). For example, Wu and Peng proposed a data 
mining-based method consisting of k-means and NNs (Wu and Peng 2017). Meteorological 
information found in historical records is used to execute a clustering approach to classify the 
days into different categories. Then the bagging algorithm-based NN is trained to get 
forecasting results for wind energy. In addition, Khodayar and team studied ultra-short-term 
wind forecasting using the deep-learning method through unsupervised feature learning from 
the unlabeled historical wind speed data (Khodayar et al. 2017). The forecasting of distributed 
solar energy systems from both macro- and micro-aspects are broadly discussed in Zhao and 
team’s research. Their approaches involve clustering PV system capacity and locations (Zhao 
et al. 2017). The data-driven forecasting approach of PV diffusion is proposed based on cellular 
automation in microscopic analysis. By decomposing the time-series data with discrete wavelet 
transforms, the proposed RNN model described by Nazaripouya’s research is developed for 
ultra-short-term solar power prediction (Nazaripouya et al. 2016). 

Like the renewable energy prediction, an accurate short-term load forecasting is the essential 
basis for energy management, system operation, and market analysis. As is mentioned by 
Zhang’s research, an increase in forecasting accuracy may bring many benefits, including cost 
savings (Zhang et al. 2018). With the emerging active role of smart grid customers, the 
efficiency of the dynamic electricity market hinges on a reliable prediction of electricity 
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consumption. To address impacts of weather conditions on electricity consumption, Liu’s 
research proposed a map/reduce programming framework for distributed load forecasting by 
partitioning the geographical area according to local weather information (Liu et al. 2018). 
Ahmad and team use an extreme learning machine ensembled with a novel wavelet 
transformation for electricity consumption after conditional mutual information-based feature 
selection (Ahmad et al. 2017). To overcome the volatility and uncertainty of load profiles, the 
RNN is adopted with a novel pooling layer to avoid the overfitting problems described by Shi 
and team’s research (Shi et al. 2018). In comparison to forecasting the aggregated load, the 
energy consumption in a single house is usually volatile and difficult to predict. In response to 
the recent success of deep learning, research by Cai and team applies a LSTM RNN-based 
framework to the residential load forecasting as the latest deep-learning technique. This allows 
them to consider the impact of social activities on the prosumers’ arrangements for their 
generation and consumption patterns and further discuss the overall impact on the final load 
and the network usage (Cai et al. 2017). 

Table 7. ML in forecasting. 

Reference ML Method Data Strength Shortcoming 
Wu and 
Peng 2017 

K-means and
NN

Historical wind 
data 

Achieves high 
accuracy for hourly 
wind forecast. 

Does not work well for 
very short-term wind 
forecasts. 

Khodayar et 
al. 2017 

Unsupervised 
deep learning 

Historical wind 
data 

Works well for very 
short-term wind 
forecasts. 

Needs a large amount 
of historical data. 

Zhao et al. 
2017 

Unsupervised 
deep learning 

Historical solar 
data 

Achieves high 
accuracy for hourly 
solar forecasts. 

Does not work well for 
very short-term solar 
forecasts. 

Nazaripouya 
et al. 2016 

RNN model Historical solar 
data 

Works well for very 
short solar forecasts. 

High computational 
complexity. 

Liu et al. 
2018 

Neural network, 
gray model, 
autoencoder 

Historical load 
data 

Different forecasting 
models are used for 
different local loads. 

Does not work well for 
very short-term load 
forecasts and has high 
uncertainty. 

Ahmad et al. 
2017 

Extreme learning 
machine 

Historical load 
data 

Achieves high 
accuracy for hourly 
load forecast. 

Does not work well for 
very short-term load 
forecasts and has high 
uncertainty. 

Shi et al. 
2018 

RNN model Historical load 
data 

Works well for very 
short-load forecasts. 

May suffer overfitting 
issue. 

Kong et al. 
2019 

LSTM RNN Historical load 
data at house 
level 

Works well for single 
house load 
forecasting. 

Needs a large amount 
of historical data. 

Karimi et al. 
2021 

Spatiotemporal 
GNNs 

316 PV 
systems from 
California, 
Hawaii, and 
New York with 

Better performance 
than models that only 
use temporal 
formulation. 

Learning covariance is 
heavily dependent on 
dataset quality. 

Artificial Intelligence/Machine Learning Technology in Power System Applications 33



Reference ML Method Data Strength Shortcoming 
National 
Oceanic and 
Atmospheric 
Administration 

Yu et al. 
2020 

Spatiotemporal 
GNNs 

Open wind 
power data 
from NREL. 

• Better accuracy
than k-nearest
neighbors.

• Support vector
regression, and
LSTM NN.

The structure of GNN 
changes as the size of 
the graph changes, 
resulting in retraining 
from scratch. 

4.7 Load Profiling and Nonintrusive Load Monitoring 

Load profiling is a way to characterize the typical behavior of electric consumption, which is 
usually represented in the time domain for load forecasting, demand-side management, and 
capital planning. To better understand the information behind the stochasticity and irregularity of 
residential energy consumption, an in-depth analysis is presented by Granell and team that 
includes a finite mixture model-based clustering technique (Granell et al. 2016). As one of the 
main tasks of load profiling, a better understanding of the flexibility of customers’ electricity 
consumption is the basis for demand response, which can be used to release the pressure of 
power system in terms of thermal and voltage constraints. A multiresolution analysis method 
based on a wavelet analysis is proposed by Li and team to extract the spectral and time-domain 
features of load data (Li et al. 2016). Different permutations of typical load profiles provide a 
more flexible load profiling with a reduction of computation. With the popularization of EVs, 
learning their charging load patterns is becoming a key step for the stability of power grids. 
Munshi and Mohamed use an unsupervised clustering algorithm to extract the pattern of EV 
charging loads with real power measurements. Furthermore, the flexibility of the collective EV 
charging demand is analyzed with Bayesian maximum likelihood (Munshi and Mohamed 2018). 
Research done by Wang and team focuses on the problem introduced by the huge load profile 
data with the popularity of smart meters installed at the household level, which poses 
challenges to the communication and storage of measurement data as well as the extraction of 
vital information from massive records (Wang et al. 2017). The K-SVD sparse representation 
technique is used to decompose the load profiles into several partial usage patterns for a linear 
SVM-based method to recognize the type of customers. 

Load disaggregation is also known as nonintrusive load monitoring (NILM) and it aims to 
disaggregate the overall load profiles at the household level into the energy consumption of 
individual appliances. Unlike the direct appliance monitoring framework, the NILM from only one 
smart meter installed in a house is more easily be accepted by customers (Zhang et al. 2018). 
Because different types of household electric appliances have different potentials to be involved 
in the demand response program, the appliance-level load profiles allow utilities to better 
understand customer behavior and help develop a more energy-efficient strategy. Kong and 
team adopt the hidden Markov models (HMMs) with the segmented integer quadratic constraint 
programming to disaggregate the household power profile at an average frequency of 0.3 Hz 
into the appliance-level (Kong et al. 2019). Research by Henao and team proposed an NILM 
approach based on the subtractive clustering the maximum likelihood classifier for a date set 
with 1 Hz sampling rate (Henao et al. 2017). The appliances are modeled as being in ON/OFF 
states in this event-based load disaggregation algorithm. As a single channel blind source 
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separation problem, the dictionary learning-based approaches can be used in NILM. A deep-
learning approach with multiple layers of dictionaries trained for each device as “deep sparse 
coding” is used by Singh and Majumdar (2018). Compared with HMM, the latter method is not 
suitable for real-time application. By combining the DT and nearest-neighbor algorithms, the 
semi-supervised ML is applied to the NILM problem by Gillis and Morsi and the signal features 
are extracted by matching a set of net wavelets to the load classes (Gillis and Morsi 2017). 

Aggregated representation of load models connects the power distribution network and power 
transmission network—one of such load representations is known as the WECC composite load 
model (CLM), including a large number of parameters. Khazeiynasab and team applied a 
conditional variational autoencoder for 64 CLM parameter identification using time-series data 
representing different events for power and voltage measurements, which shows matching 
output with the identified parameters (Khazeiynasab et al. 2022b). 

Table 8. ML in load monitoring/profiling. 

Reference ML Method Data Strength Shortcoming 
Granell et al. 2016 Finite mixture 

model-based 
clustering 

House level load 
data 

Improves the 
clustering of 
electricity load 
profiles by 
considering time 
resolution. 

Needs large 
amount of 
labeled data. 

Munshi and 
Mohammed 2018 

Unsupervised 
clustering 

Smart meter data Accurately extracts 
the EV charging 
load patterns. 

High offline 
computation 
complexity. 

Wang et al. 2017 K-SVD sparse 
representation 
technique 

Smart meter data Accurately extracts 
vital information 
from massive smart 
meter data. 

High offline 
computation 
complexity. 

Kong et al. 2019 Hidden Markov 
models 

Smart meter data Accurately 
disaggregates the 
household power 
profile to the 
appliance level. 

High sampling 
rate at 0.3 Hz 
is required for 
smart meters. 

Henao et al. 2017 Subtractive 
clustering of 
the maximum 
likelihood 
classifier 

Smart meter data The appliances are 
accurately modeled 
as being in ON/OFF 
states. 

High sampling 
rate at 1 Hz is 
required for 
smart meter. 

Singh and 
Majumdar 2018 

DNN Smart meter data Accurately 
disaggregates the 
household power 
profile to the 
appliance level. 

Not suitable for 
real-time 
application. 
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Reference ML Method Data Strength Shortcoming 
Gillis and Morsi 
2017 

DT, nearest-
neighbor 
algorithms 

Smart meter data Accurately 
disaggregates the 
household power 
profile to the 
appliance level.  

High offline, 
computation 
complexity. 

Dinesh et al. 2019 Graph spectral 
clustering 

Reference Energy 
Disaggregation 
Data Set, and 
Rainforest 
Automation Energy 
Dataset 

Modeling joint 
appliance behavior 
via an appliance 
graph. 

The time-of-
day context is 
not considered 
in the model. 

Chen et al. 2022  CGNN Two variations of 
54-bus distribution
model

• Hyperstructures
CGNN is
developed.

• New metric (U-
Score) explores
the efficiency of
information flow
among different
types of electrical
nodes.

Testing 
accuracy 
varies between 
75% and 92%. 

Khazeiynasab et 
al. 2022b 

Conditional 
variational 
autoencoder 

IEEE 39-bus 
system with 
composite load 
model 

Shows good 
performance for 60-
parameter load 
model. 

• Limited
testing with
different bus
fault
locations.

• Small testing
system.

4.8 Oscillation Detection 

With the widespread deployment of PMUs over the past decade, synchrophasor-based data 
analytics have significantly advanced in both research and industry applications. Nowadays, 
many U.S. control centers are equipped with oscillation detection functions based on incoming 
PMU measurement streams. But the ever-growing data volume and the high sampling rate 
present challenges for oscillation-related situational awareness applications in transmission 
systems and the potential extension of such applications to distribution systems. Therefore, the 
development of practical ML and data analytics algorithms, capable of spatiotemporal 
monitoring of frequency dynamics and distinguishing between normal and emergency operation 
conditions, holds great promise. 

ML techniques could be used for event and anomaly detection to aid operators in their decision-
making processes. Research conducted by Hou and the team explored multiple feature 
selection approaches to identify factors of great influence on the damping and frequency of the 
Montana-Northwest mode in the Western Interconnection. Such insights could improve the grid 
operator’s situational awareness because the existing mode estimates are usually delayed (Hou 
et al. 2018). 
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Table 9. ML in oscillation detection. 

Reference ML Method Data Strength Shortcoming 
Hou et al. 2018 Principal 

component 
analysis, 
support vector 
machine 

System conditions, 
equipment status, 
damping, 
frequency. 

Quantify the 
nonlinear individual 
influences and their 
interactions among 
major factors  

Needs large 
amount of 
labeled data 
across regions 
with different 
operating 
conditions. 

Artificial Intelligence/Machine Learning Technology in Power System Applications 37



5.0 AI/ML Opportunities and Challenges in Power Systems 
In the field of power system applications, the combination of AI and ML offers numerous 
opportunities and challenges. AI-driven smart edge devices are capable of real-time data 
analysis and enhancing grid monitoring and decentralized decision-making to improve grid 
resilience. Additionally, high-performance computing (HPC) accelerates complex simulations 
and data processing. Nevertheless, a significant challenge persists in dealing with uncertainty, 
particularly regarding renewable energy fluctuations. This highlights the importance of AI/ML 
algorithms that are proficient in managing risk under uncertain conditions and quickly adapting 
to unforeseen situations. Emerging techniques, like meta-learning-enabled systems, are used to 
generalize knowledge from various sources. Safety is paramount, as AI/ML plays a central role 
in decision-making, necessitating advancements in safety-constrained learning. This section will 
briefly discuss these opportunities and challenges. 

5.1 Grid Edge 

The grid edge represents an unprecedented opportunity to drastically enhance the reliability, 
availability, and efficiency of the electric grid with the rise of decentralized energy systems. 
These enhancements will mostly be achieved through smart sensing, communication, and 
control at the edges of the electric grid network rather than in the utility back-office and follow 
the migration of computing trend, including data analytics and decision-making, from a central 
cloud server to edge devices, such as smart meters and sensors, for consumer Internet of 
Things and many other domains. 

Among all the responsive characteristics of an electric grid, adaptively and effectively managing 
the balance of power supply and the demand of the grid system consistently remains the 
primary task. Traditionally, this has been achieved by collecting raw information from terminal 
meters and sensors through utility-maintained communication channels and protocols, 
performing analysis and making decisions at a central server, and then feeding back to the 
appropriate controllers for a response. However, this process has several drawbacks, such as 

• Long response latency: Major electric system outages are often caused by the lack of
timely awareness of grid status and immediate response to power disturbance events before
they cascade into interruptions of critical facilities and services.

• Low communication efficiency: The deployment of an electric grid network usually and
necessarily covers a large space, including both dense urban areas and lower-density rural
areas. Therefore, reliable bandwidth for communication among the enormous number of
meters and grid devices can be extremely valuable, particularly when connecting to “hard-
to-reach” devices.

One of the essentials of current AI is its ability to intelligently “preprocess” raw data from 
terminal sensors. To prevent the overflow of information and repeated processing, the raw data 
can be locally processed instead of automatically transmitted to the centralized server. What is 
really needed is the ability to intelligently preprocess the raw data in the terminal sensors so that 
only the key data are produced and transmitted. The concept of edge intelligence describes the 
migration of knowledge discovery and application from the cloud to the edge devices where 
data are generated, acquired, or sampled. Edge intelligence allows local and in situ data 
processing and decision-making, reducing delay and energy consumption in communication, 
storage, and data movement. 
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AI/ML in the context of grid-edge will be characterized by distributed computing, decentralized 
AI/ML models, robust communication infrastructure, and interoperability. These elements will 
enhance efficiency and responsiveness to grid operating conditions and consumer needs. 

Edge intelligence brings the following potential benefits: (1) by moving ML to the edges, instant 
local decision-making becomes feasible; (2) security and privacy are assured by keeping data 
local and following local management policy; (3) communication efficiency is enhanced by only 
transmitting decisions or alarms rather than raw data; (4) adaption and resiliency are increased 
in response to temporary or regional failure; (5) decision-making becomes more robust, 
resulting from local information exchange and integration. 

5.2 High-Performance Computing and Workflow Management 

HPC and efficient workflow management have become indispensable components in AI/ML. 
These two technologies create a powerful synergy that offers crucial opportunities. The 
integration of HPC and AI/ML marks an exciting opportunity in power system applications as 
AI/ML tasks necessitate the use of HPC resources. This synergy offers a gateway to optimizing 
grid operations, improving energy efficiency, and enhancing grid resilience. HPC’s 
computational power enables real-time analysis of vast datasets, thereby facilitating scalable 
power system simulations. In tandem, AI/ML algorithms leverage this computational strength to 
enhance the speed and efficiency of power system applications. Faster interaction between 
HPC and AI/ML can enable more complex and powerful functions. Their synergistic interaction 
holds the potential to elevate the performance of both, empowering power systems to tackle the 
complexities of renewable energy integration and ushering in an era of intelligent, efficient, and 
sustainable energy networks. 

The integration between HPC and AI/ML is critical for shaping the future grid, particularly when 
considering the evolving architecture of the power system, especially when grid edge is 
considered. Meanwhile, the effectiveness of HPC in AI/ML relies heavily on streamlined 
workflow management. Workflow management orchestrates the various components in HPC 
and AI/ML functions. From data preprocessing to model training and evaluation as well as 
combining diverse applications across various HPC platforms, operating systems, and software 
tools—whether open-source, commercial tools, or customized codes, workflow management 
assures that tasks are executed in the right sequence, dependencies are managed, and 
resources are allocated efficiently. Workflow management not only facilitates the development 
of more complex and powerful applications but also minimizes the potential for errors. 
Moreover, by automating repetitive and time-consuming tasks, workflow management allows 
researchers to focus on higher-level challenges, creativity, and innovation. 

5.3 Risk Control Under Uncertainty 

With more complex power systems and increased penetration of variable energy resources, it is 
important to understand the impacts of generation and load uncertainties on grid reliability, 
resiliency, and security. Advanced algorithms are necessary to manage the variables that affect 
the variations in generations, loads, and contingencies, etc. However, many inputs impacting 
grid security are unknown. Determining how these unknowns affect the accuracy of the 
assessments under uncertainty is essential. This effort lines at the core of the field of 
uncertainty quantification (UQ). Specifically, rigorously quantifying how input uncertainties affect 
model outputs is the goal of forward UQ or uncertainty propagation (UP) problem. 
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The simplest method for tackling the UP problem is the MC method. The basic idea of the MC 
method is computing empirical estimates of the statistics of a quantity of interest through sample 
averages. The MC method is guaranteed to converge given an infinite number of samples. 
However, the convergence requires a large number of samples, typically on the order of 
hundreds of thousands or millions. As a result, the MC methods can be impractical for UQ in 
tasks with high computational complexity, such as power grid dynamic security assessments. 

Researchers propose addressing tasks of high computational complexity by building a cost-
effective surrogate for the response surface. This involves selectively choosing a set of 
locations within the uncertain parameter space and evaluating the forward model at these 
locations. The number of simulations to perform is determined by the computational budget and 
desired accuracy. Because the surrogate model is inexpensive to query, it can replace the 
original simulator and perform UQ tasks using MC techniques. Popular choices for surrogate 
models in the literature include: Gaussian processes (Rasmussen and Williams 2006), 
polynomial chaos expansions (Najm 2009), and relevance vector machines (Bilionis and 
Zabaras 2012). Despite their success, these methods become intractable for problems with a 
large number of stochastic input dimensions. Constructing a surrogate response surface for a 
multivariate function with many uncertain parameters requires overcoming the phenomenon 
known as “the curse of dimensionality” (Keogh and Mueen 2011). In the context of statistical 
sampling and ML, the curse of dimensionality implies that to sufficiently explore a high-
dimensional space, it requires visiting an exponentially large number of points. Therefore, 
effective dimensionality reduction techniques are needed to address this challenge. 

A recent advancement in dimensionality reduction is constructing surrogate models using DNNs 
(Tripathy and Bilionis 2018). The powerful nonlinear function approximation capabilities coupled 
with the scalability of DNNs to high dimensions offers a very promising direction for research by 
the UQ community, with the potential to significantly improve upon state-of-the-art capabilities. 
Researchers also extend the DNNs methodology to a Bayesian treatment of DNNs (Blundell et 
al. 2015). This approach imposes a prior probability on the weights of the DNN and uses 
approximate inference techniques, such as variational inference, to estimate the posterior 
distribution over the weights (Graves 2011). Additionally, this kind of Bayesian approach would 
allow one to better quantify the epistemic uncertainty induced by limited data. DNNs are also 
naturally suited for tasks of multilevel/multifidelity UQ (Peherstorfer et al. 2018). For instance, 
fully convolutional networks do not impose constraints on input dimensionality and can be 
trained on data obtained from several simulators at varying levels of fidelity. The hierarchical 
representation of information with a DNN can be used to learn correlations between 
heterogeneous information sources. 

Power systems are highly nonlinear systems with high dimensionality and uncertainty. The 
dynamics of power systems are complicated and stochastic in both space and time, and the 
amount of measurement data (e.g., PMU data, SCADA data, etc.) is massive. The state-of-the-
art technologies of deploying deep-learning methods for UQ could be leveraged in power grid 
dynamic security assessment to (1) develop high-fidelity prediction models for very short-term 
(seconds ahead) and short-term (minutes ahead) prediction of the uncertain variables in the 
power grid; and (2) to identify an effective input sample set for the AI-based learning and 
control, which is condensed from the massive data and presents the key features of the power 
grid operation conditions. 
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5.4 Meta-Learning 

Meta-learning, also known as “learning to learn,” intends to design ML methods and models that 
could improve the process of learning new tasks or adapting to new environments rapidly with a 
few training examples. This is achieved by leveraging the learning experience gained from 
solving predecessor problems that are somewhat similar. For instance, Finn et al. (2017) 
introduced Model-Agnostic Meta-Learning (MAML), which learns an initialization to enable fast 
learning via gradient-based optimization, showing enhanced performance across diverse meta-
learning tasks. 

Currently, a good ML model often requires training with many samples and the trained model 
can only work for a single task or single environment. Humans, in contrast, make use of past 
experiences for not only repeating the same task in the future but also learning completely new 
tasks, too. That is, if the new problem that humans try to solve is similar to a few past 
experiences, it becomes easier for humans to solve the new problem. For example, people who 
know how to ride a bike are likely to discover the way to ride a motorcycle fast with little or even 
no demonstration. Is it possible to design an ML model with similar properties—learning new 
concepts and skills quickly with few training examples by transferring past experience of one or 
more source tasks to boost learning in a related target task? That is essentially what meta-
learning and transfer learning aim to solve. Meta-learning and transfer learning are gaining more 
and more attention from the research and industry application communities and becoming the 
trend for the next generation of new ML methods because the concept is more intelligent and 
similar to the procedure humans use to learn new tasks in new environments. 

The concept of meta-learning and transfer learning is critical for power grid control and 
operations with high penetrations of renewables. It provides new directions and approaches to 
enable fast online power grid control and adaption for new grid operation scenarios with 
uncertainties introduced by the high penetration of renewables at both the power grid assets 
level (for controller parameters fast adaption) and the power grid control center level (for 
emergency control and remedy actions fast adaption). Currently, power system reliability and 
security are mainly achieved through (1) protection relays, as well as controllers of conventional 
generators, (e.g., automatic voltage regulators, automatic generation control, power system 
stabilizers); and (2) grid operators’ emergency control and remedy actions at the control center. 
The protection relay and controller parameters are manually tuned and evaluated in simulations, 
which are only designed optimally at a few selected operating points through a tedious offline 
design and online tuning process. The control logics are fixed once they are deployed in the 
field. On the other side, most of the emergency control and remedy action schemes used by 
grid operators today are predefined through offline studies based on a few forecasted system 
conditions and contingency scenarios, which are either over-conservative or not very effective 
when applied in real time because of the differences between the forecast grid state and actual 
gird state. With increasing penetration of renewables, the power grid suffers increasing 
uncertainties and unconventional dynamics that may have never been seen before. As a result, 
there is an increasing risk of a lack of sufficient reliability, stability, and resilience in the current 
power grid because both the controllers of power grid assets and the emergency control and 
remedy actions at the control center level have very limited adaptability or robustness relative to 
the increasing changes and uncertainties of the power grid. 

Innovative meta-learning and transfer learning methodologies could be used for power grid real-
time control and operations at two levels: 
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• At the protection relay and controller of power grid assets level, the new technologies
could provide robust AI-based online controller parameter optimization and adaption
methodologies to enable multi-time-scale decentralized control for different power grid
assets and controllers for enhancing the resilience of power systems with increasing
renewables penetration levels, uncertainties, and dynamics. Gao et al. 2022 provides an
example of how a meta-learning algorithm can help improve the performance of doubly fed
induction generator (DFIG) during grid faults by reducing the DFIG rotor over-current and
DC-link over-voltage through adaptive controller parameter adjustments.

• At the control center level, the new technologies could provide grid operators with
effective emergency control strategies within seconds after the disturbances and extreme
events under a stochastic environment, which is critical to assuring the resilience of the
power grids. The resulting technology could provide a disruptive capability to independent
system operators, regional transmission organizations, and power utilities to enable more
efficient, resilient, and secure grid operation to prevent cascading failures and large-area
blackouts.

5.5 Safety-Constraint Learning 

Learning-based control has been demonstrated to be a powerful paradigm for learning optimal 
policies from experimental data (Tan et al. 2018). However, to find optimal policies, most 
learning-based control algorithms explore the whole action space, which may be harmful for 
real-world systems because some of the actions may violate the physical safety constraints of 
the systems at certain stages during the training. Often, it is not effective to resolve this safety 
issue during the training by simply adjusting the limits and boundaries of the action space 
because whether the physical constraints of the system will be violated is determined together 
by the state transition equations, current states, and the actions. Furthermore, the difficulty of 
interpreting the inner workings of many ML algorithms (notably in the case of DNNs), makes it 
challenging to make meaningful statements about the behavior of a system during the learning 
process, especially while the system has not yet converged to a suitable control policy. While 
this may not be a critical issue in a simulated reality, it can quickly become a limiting factor when 
attempting to put such an algorithm in control of a system in the physical world. As a 
consequence, learning-based control algorithms are rarely applied directly on safety-critical 
systems such as power grids in the real world. 

Current efforts in policy meta-learning and transfer learning propose training an initial control 
policy in simulation and then carrying it over to the physical system (Christiano et al. 2016). 
While progress made in this direction is likely to reduce overall training time and increase the 
intelligence of the AI, it does not eliminate the risk of catastrophic system misbehavior. State-of-
the-art NN policies have been shown to be vulnerable to small changes between training and 
testing conditions which inevitably arise between simulated and real systems (Huang et al. 
2017b). Guaranteeing the correct behavior of simulation-trained schemes in the real world thus 
remains an important active and hot research area. 

Safety-constraint learning explored learning algorithms that explicitly consider safety, which is 
defined in terms of safety guarantees under a stochastic environment (Berkenkamp et al. 2017) 
(Fisac et al. 2018). Safety-constraint learning algorithms are typically designed and archived by 
combing model-based control-theoretical analysis with data-driven Bayesian inference to 
construct and maintain high-probability guarantees around an arbitrary learning-based control 
algorithm. Drawing on Hamilton-Jacobi robust optimal control techniques, the safety-constraint 
learning defines a least-restrictive supervisory control law, which allows the system to freely 
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execute its learning-based policy almost everywhere but imposes a computed action at states 
where it is deemed critical for safety. The safety analysis is refined through Bayesian inference 
in light of newly gathered evidence, thereby both avoiding excessive conservativeness and 
improving reliability by rapidly imposing the computed safe actions when confidence in model-
based guarantees decreases because of unexpected observations. 

5.6 Other Opportunities 

Numerous opportunities await exploration in the application of AI/ML to power systems. Building 
advanced AI models is at the forefront and promises enhanced system intelligence. 
Implementing self-validation mechanisms, integrating human-in-the-loop approaches, and 
incorporating physics-aware ML techniques can greatly augment model robustness and 
reliability. Embracing GCNs opens doors to novel application patterns, facilitating complex grid 
analyses. Balancing speed and accuracy, especially in time-constrained scenarios, offers the 
potential to employ surrogate models and initially favors faster insights and gradual refining 
precision. ML-driven optimization, federated learning, and the synergy of the Internet of Things 
with ML presents avenues for smarter grid management. The concept of digital twins (mirroring 
real-world systems for precise modeling and control) holds immense potential for enhancing 
power system performance and resilience. 

5.7 Challenges 

Besides all the opportunities listed above, there are still many challenges in the application of 
AI/ML to power systems. Some challenge examples include handling large datasets, especially 
in scenarios involving extreme or unforeseen events. The sensitivity of data, particularly in the 
transition from development to deployment, poses a significant hurdle. Ensuring data formatting 
and compatibility across diverse sources is crucial. A strategic perspective and a clear roadmap 
are lacking, as utilities acknowledge the importance of AI/ML but await compelling results before 
committing more resources. Synergy among various domains becomes imperative. The 
interpretability of ML methods and their results raises concerns. Moreover, integrating domain 
knowledge and physics representation into existing ML frameworks remains a persistent 
challenge in this dynamic field. 

The major challenges for applying AI/ML technologies to power systems can be summarized as 
follows: 
1. Data Quality and Availability: the effectiveness of AI/ML models is heavily reliant on the

quality and availability of data. The variety, volume, and recency of data used in training,
validating, and continual learning of AI models are vital in determining their effectiveness
and adaptability. Utilizing diverse data sources can unlock potent insights, yet it also resents
challenges related to the data compatibility and the sharing of information between
organizations. Consideration must be given to data ownership and privacy attached to the
data. In power systems, obtaining comprehensive and accurate data, especially from
diverse sources, can be challenging. Assuring data integrity and accessibility remains a key
hurdle.

2. Domain Knowledge Incorporation: incorporating domain knowledge into scientific ML
involves interdisciplinary collaboration between experts in ML and power systems. It
requires a deep understanding of both the underlying science and ML techniques.
Translating power system knowledge into actionable features or input representations for
ML models can be complex.
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3. Explainability and Trust: the inherent complexity of AI/ML algorithms can present
challenges in generating interpretable and understandable conclusions, as well as gaining
insights from ML prediction to improve confidence in the results. Establishing trust among
stakeholders requires efforts to enhance the transparency and interpretability of these
systems.

4. Robustness: developing stable and robust scientific ML methods to assure outcomes are
unduly sensitive to disturbance in training data and model selection. This includes handling
various configurations and uncertainties in power systems and being resilient to changes in
training data and model selection. Achieving robustness requires rigorous testing and
validation.

5. Interoperability and Standardization: power systems often involve a variety of equipment
and technologies from different manufacturers. Achieving interoperability and
standardization across these diverse components to enable seamless integration of AI/ML
solutions poses a significant challenge.

6. Automation: automating machine learning (ML) applications effectively within the power
systems involves utilizing data-intensive scientific ML techniques to automate scientific
inference and data analysis tasks. Key factors include reliably identifying and sampling
signals, patterns, and structures within complex, high-dimensional, noisy, and uncertain
input data.

7. Human–Machine Interactions: human-machine interactions are critical for the adoption
and acceptance of AI/ML techniques in the power industry. This involves defining clear
roles, interfaces, and workflows for human operators and machines, ensuring the acquisition
of high-quality data and high-fidelity models to enhance system resilience and
responsiveness, and addressing human factors.

8. Regulatory and Ethical Considerations: the deployment of AI/ML in power systems raises
regulatory and ethical questions. Assuring compliance with regulatory frameworks,
addressing potential biases in algorithms, and navigating ethical considerations related to
privacy are critical aspects that must be carefully managed.

Within this course, a multitude of opportunities and challenges have been discussed. Its 
purpose extends beyond documentation; it stands as a technical resource, aiding researchers 
intrigued by AI/ML applications in power systems in acquiring fundamental knowledge and 
comprehending both the present landscape and forthcoming hurdles. The continued 
advancement of AI/ML technologies will play a pivotal role in enhancing power system 
operation, management, optimization, and control. This aligns perfectly with the mission to 
advance clean energy solutions. 

In conclusion, the journey towards leveraging AI/ML for power system applications is marked by 
both promising opportunities and complex challenges. Strategic approaches that address data 
issues, interoperability concerns, transparency, and ethical considerations will be instrumental in 
realizing the transformative potential of AI/ML in shaping the future of power systems. 
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1. Which factor is NOT listed as a key contributor to modern ML success?  
o Greater data availability  
o Innovative algorithms  
o Increased computational power  
o Lower hardware costs  
o  

2. What triggered the most recent wave of deep learning in AI?  
o Development of ChatGPT  
o Introduction of 5G networks  
o Google's BERT model release  
o AlphaGo's victory over the human Go champion  
o  

3. Which ML category learns from unlabeled data?  
o Supervised learning  
o Reinforcement learning  
o Graph neural networks  
o Unsupervised learning  
o  

4. What distinguishes reinforcement learning from supervised learning?  
o Uses labeled data  
o Learns via trial-and-error interaction  
o Optimizes static outputs  
o Has no feedback mechanism  
o  

5. Which type of neural network is best for sequence modeling?  
o CNN  
o Autoencoder  
o LSTM  
o GAN  
o  

6. What is the purpose of batch normalization in deep learning?  
o Prevent data overfitting  
o Increase learning rate  
o Normalize layer inputs for stable training  
o Improve data labeling  
o  
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7. Which AI technique is most suited for synthetic power system data 
generation?  

o Decision Trees  
o Generative Adversarial Networks (GANs)  
o Logistic Regression  
o SVM  
o  

8. What does Graph Neural Networks (GNNs) primarily focus on?  
o Structural relationships among entities  
o Time-series forecasting  
o Text classification  
o Image recognition  
o  

9. Which ML technique has been applied to load forecasting in power 
systems?  

o Supervised learning  
o Reinforcement learning  
o Unsupervised learning  
o Graph learning  
o  

10. In power system fault detection, what advantage does CNN offer?  
o Accurate feature extraction from complex signals  
o Solves optimization problems  
o Generates synthetic data  
o Performs clustering analysis  
o  

11. Which AI technology could serve as a digital assistant for utility staff?  
o Recurrent Neural Networks  
o Large Language Models like ChatGPT  
o Graph Neural Networks  
o Reinforcement Learning agents  
o  

12. Which AI/ML approach allows machines to generate new data samples?  
o Decision Trees  
o k-Means clustering  
o Generative models (GANs, VAEs)  
o Regression models  
o  
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13. What key factor drives the success of ChatGPT-type models?  
o Better sensors  
o Transformers and attention mechanisms  
o Backpropagation  
o Data clustering  
o  

14. What is the primary application of AI/ML in asset health monitoring?  
o Load forecasting  
o Transient stability  
o Optimal power flow  
o Predictive maintenance  
o  

15. What is one major challenge in applying AI to grid systems?  
o Lack of renewable resources  
o Ensuring model safety and trustworthiness  
o Insufficient computing hardware  
o Scarcity of labeled data  
o  

16. Which supervised learning technique is commonly used for fault detection?  
o Autoencoders  
o Support Vector Machine (SVM)  
o Reinforcement Learning  
o GANs  
o  

17. What is the role of graph convolutional networks in power systems?  
o Capture spatial dependencies of grid elements  
o Forecast weather  
o Model language data  
o Perform image recognition  
o  

18. Which ML technique is used for power market operation optimization?  
o Reinforcement learning  
o Unsupervised learning  
o Clustering algorithms  
o Variational Autoencoders  
o  
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19. What is the main benefit of integrating AI/ML in state estimation?  
o Reduces grid size  
o Enhances real-time monitoring accuracy  
o Decreases data security  
o Increases latency  
o  

20. What principle underpins safe AI/ML use in power systems?  
o Rapid deployment  
o Full automation  
o Maximum data exposure  
o Transparency and human oversight  
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